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Foreword
Cricket	Liu
Chief	Infrastructure	Officer,	Infoblox

If	you’ve	picked	up	this	book	and	are	reading	the	foreword,	of	all	things,	then	I’m	going	to
assume	you	don’t	need	to	be	persuaded	that	IPv6	is	important.	Vitally	important,	in	fact.
Downright	critical.

In	fact,	it’s	so	important	that	even	though	you’re	already	convinced,	I’m	going	to	take	a
few	sentences	to	try	to	really	galvanize	that	conviction.

Most	of	the	world	is	effectively	out	of	IPv4	addresses.	Of	the	five	Regional	Internet
Registries	that	cover	the	world’s	population,	only	one,	AFRINIC,	still	has	any	substantial
stock	of	IPv4	addresses.	That	means	that	the	rest	of	the	world’s	population,	about	85%	of
us,	are	going	to	have	to	get	by	without.	And	this	couldn’t	have	come	at	a	worse	time,
when	movements	such	as	cloud	computing,	Bring	Your	Own	Device,	and	the	Internet	of
Things	are	consuming	IP	addresses	faster	and	faster.	Why,	Asia	alone	is	home	to	about
60%	of	the	world’s	population,	or	over	four	billion	people,	and	Internet	penetration	there
is	estimated	at	only	about	25%!	That	leaves	three	billion	people	without	IP	addresses	—
and	poor	IPv4	only	had	4.3	billion	to	start	with.

Luckily,	prescient	Internet	engineers	knew	this	day	was	coming	and	designed	a	successor
to	your	father’s	version	of	the	Internet	Protocol.	This	protocol,	IP	version	6,	replaces	its
predecessor’s	32-bit	addresses	with	128-bit	IP	addresses,	for	an	address	space	that	is	about
8x1028	times	bigger.	A	standard	IPv6	subnet	can	contain	more	IP	addresses	than	the	entire
IPv4	Internet	—	squared!

What	can	you	do	with	all	that	space?	Lots	of	things.	You	can	forget	about	trying	to
allocate	subnets	that	are	just	big	enough	to	accommodate	the	hosts	on	a	LAN.	You	can
devote	groups	of	bits	in	the	address	to	signify	important	attributes	of	your	networks,	like
region,	country,	city,	and	department.	You	can	design	your	address	space	so	that	it	makes
route	summarization	and	access	controls	easier.	That’s	a	lot	to	look	forward	to.

But	you	can’t	just	apply	the	principles	you’ve	learned	in	IPv4	to	designing	your	IPv6
address	plan.	IPv6’s	enormous	address	space	is	so	large	that	it	requires	an	entirely
different	way	of	thinking,	dispensing	with	the	practice	of	trying	to	allocate	subnets	just
large	enough	to	accommodate	the	expected	population	of	hosts.	But	who	can	lead	us	out
of	IPv4’s	Valley	of	Despair,	with	its	scarcity	and	guesstimating	and	gut-churning	doubt?
Well,	I	know	a	guy.

Tom	Coffeen	cut	his	teeth	on	Limelight	Networks’	IPv6	rollout,	and	he’s	been	talking
about	the	protocol	ever	since,	even	when	we	begged	him	for	a	break.	At	Infoblox,	he’s
advised	dozens	of	our	customers	on	IPv6	address	planning.	And	he’s	whip-smart,	a
nonpareil	wordsmith,	and	always	ready	with	an	amusing-but-relevant	quote.

For	all	those	reasons,	I	think	you’ll	really	enjoy	this.
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Dedication
This	book	is	dedicated	to	the	memory	of	my	father,	Clifford	Glenn	Coffeen.
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Preface
It’s	an	exciting	and	somewhat	daunting	time	to	be	a	network	engineer.	We’re	living	and
working	through	an	era	of	challenging	but	essential	change	in	our	chosen	field.	Think	of
the	traditional	protocols	and	operational	practices	that	many	of	us	cut	our	professional
teeth	on.	They’ve	helped	deliver	the	Internet	and	sustained	its	initial	period	of
unprecedented	growth	and	success.	But	now	they’re	rapidly	approaching	the	limits	of	their
ability	to	enable	the	next	critical	stage	of	Internet	and	network	evolution.

Virtualization,	cloud	computing,	SDN,	mobile	devices,	the	Internet	of	Things	—	all	of
these	trends	are	laying	bare	the	weaknesses	of	traditional	networking	technology.	Such
trends	would	seem	to	simultaneously	promise	and	demand	limitless	network	scale	and
unprecedented	business	agility,	but	from	the	same	old	tubes	and	wires	and	the	quaint	rules
that	bind	them	together.	You	can	almost	hear	Scotty	inveighing,	“She	canna’	take
anymore,	Captain!”

Unless	you’re	Rip	(or,	perhaps,	rIP)	Van	Winkle,	none	of	these	weaknesses	is	as	familiar
as	the	limited	and	rapidly	dwindling	supply	of	IPv4	addresses.	Likely	just	as	familiar	is
the	remedy	for	this	shortage,	IPv6.
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Who	Should	Read	This	Book
I’ve	written	this	book	with	network	architects,	engineers	and	administrators	for	enterprises
in	mind.	For	practical	examples,	I’ve	tried	to	stick	with	scenarios	and	network	designs	that
will	be	familiar	to	enterprise	IT	personnel.	However,	much	of	the	material	presented
should	be	suitable	to	anyone	who	needs	to	learn	about	network	address	planning	using
IPv6.	The	addressing	plan	concepts	we’ll	explore	should	be	relevant	and	extensible	to	IP
networks	of	any	purpose	or	size.

The	content	of	this	book	is	based	on	the	assumption	that	the	reader	has	a	working	grasp	of
both	the	theory	and	practice	of	designing	and	operating	computer	networks.	Universally
deployed	protocols	like	TCP/IP,	and	Ethernet	and	WAN	and	LAN	architectures	should
already	be	very	familiar	to	the	reader,	while	a	general	knowledge	of	more	recent	trends	in
data-center	virtualization,	cloud	computing,	mobile	networks,	SDN,	and	the	IoT	may	be
helpful	as	we	discuss	how	IPv6	addressing	plan	design	is	likely	to	be	impacted	by	(and
impact)	these	rapidly	evolving	technologies.

I’ve	aspired	to	make	IPv6	Address	Planning	durably	useful	to	network	architects	and
engineers,	whether	they	are:

Getting	started	with	IPv6	adoption
Ramping	up	their	IPv6	adoption	efforts
Iterating	or	improving	their	existing	IPv6	addressing	plans
Adding	IPv6	to	an	existing	IPv4	network
Designing	and	implementing	a	“green-field”	IPv6	network

Whatever	your	particular	situation,	this	book	aims	to	help	you	design	an	addressing	plan
that	will	prove	effective	for	years	to	come.	To	do	that,	you’ll	need	best-practice	design
concepts,	principles,	and	practical	examples.	This	book	was	conceived	and	written	to	help
provide	them.
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Why	I	Wrote	This	Book
Begining	in	2008,	I	was	tasked	with	deploying	IPv6	on	a	large	service	provider	network.
At	the	time,	there	was	already	a	decent	amount	of	technical	literature	on	IPv6	—	at	least
enough	to	make	a	substantial,	if	not	entirely	confident,	start.	(And	whatever	might	have
been	lacking	in	terms	of	documented	architectural	and	operational	practices,	we	at	least
knew	we’d	need	some	IPv6	addresses!)

Since	we	had	customers	and	infrastructure	around	the	world,	it	made	sense	at	the	time	to
obtain	IPv6	allocations	from	each	of	the	Regional	Internet	Registries	(RIRs).	As	a	service
provider,	we	were	used	to	regularly	requesting	and	obtaining	IPv4	addresses,	and	it	turned
out	to	be	remarkably	easy	to	get	three	IPv6	allocations,	one	each	from	ARIN,	APNIC,	and
RIPE	(for	North	America,	Asia	Pacific,	and	Europe	respectively).

Based	on	documentation	we	submitted,	each	RIR	assigned	us	an	allocation	(still)	fairly
typical	for	a	service	provider	request:	one	/32	of	IPv6	address	space	(or	7.9x1028
addresses).	Suddenly,	after	years	of	designing,	deploying,	and	operating	networks	where
every	IPv4	subnet	had	to	be	carefully	constrained	to	preserve	a	limited	quantity	of
addresses	for	host	assignment	(along	with	the	mostly	futile	attempt	to	preserve	the	ability
to	aggregate	prefixes),	I	had	the	reverse	problem	on	an	astronomical	scale:	how	the	heck
was	I	going	to	logically	carve	up	a	total	of	3	times	7.9x1028	IPv6	addresses	to	number	the
network?	What	I	needed	was	a	comprehensive	resource	to	walk	me	through	how	to	design
and	manage	an	IPv6	addressing	plan.	But	whatever	task-specific	information	existed
seemed	to	be	scattered,	very	uncomprehensively,	across	many	documents	and	sources.

This	is,	of	course,	not	a	particularly	new	kind	of	problem	for	any	networking	engineer.
Arguably,	it’s	a	perennial	condition	of	our	profession	that	hopefully	keeps	us	challenged
and	engaged	throughout	our	careers.	Still,	there’s	no	point	in	struggling	needlessly.	The
right	book	at	the	right	time	can	go	a	long	way	toward	maximizing	our	effectiveness	and
satisfaction	as	network	engineers	and	architects.	More	bluntly,	if	a	book	can	help	you
avoid	dumb	and	costly	mistakes	or	having	to	reinvent	operational	and	architectural
practice	from	scratch,	that’s	probably	a	book	worth	reading	and	keeping	handy.

And	if	you’re	getting	the	idea	that	my	own	efforts	in	IPv6	address	planning	were	thus
afflicted	by	the	lack	of	such	a	book,	you’re	absolutely	right!	My	first	IPv6	addressing	plan
design	quickly	became	my	second	(and	third,	and	fourth)	as	I	struggled	to	shed	habits	of
mind	and	practical	experiences	from	IPv4	that	were	now,	if	not	entirely	useless,	then
greatly	limiting.

Thus,	as	countless	tech	authors	before	me	have	similarly	asserted,	this	is	the	book	I	wish
I’d	had	when	I	started	my	first	IPv6	addressing	plan.	I	sincerely	hope	and	believe	you	will
find	it	useful.



Navigating	This	Book
Part	I
Chapter	1,	Where	We’ve	Been,	Where	We’re	Going

This	chapter	introduces	readers	to	the	astronomical	abundance	of	IPv6	addressing.	The
historical	origins	of	IPv6	are	explored	while	highlighting	some	of	the	protocol’s
fundamental	characteristics.	We	also	look	at	IP	addressing	methods	in	the	early	Internet
and	the	resulting	dilemma	of	scale	that	led	to	the	development	of	IPv6.	The	recent	history
of	IPv6	deployment	along	with	IPv4	exhaustion	is	covered.	We	conclude	with	the	outlook
for	IPv6	along	with	the	importance	of	IPv6	address	planning.

Chapter	2,	What	You	Need	to	Know	About	IPv6	Addressing

Chapter	2	reviews	the	basics	of	IPv6	addressing	in	the	context	of	IPv6	address	planning,
including	address	representation,	structure,	and	types.	Improvements	to	the	protocol	are
covered,	as	well	as	the	significance	of	a	64-bit	host	address	portion.	We’ll	briefly	cover
some	of	the	issues	with	NAT	and	conclude	with	a	real-world	production	loopback	address
example.

Chapter	3,	Planning	Your	IPv6	Deployment

The	necessary	elements	of	a	successful	overall	IPv6	adoption	effort	are	covered	in	this
chapter.	We	look	at	the	challenge	surrounding	recognizing	a	business	case	for	IPv6
deployment	and	how	the	cross-functional	nature	of	the	undertaking	introduces	unique
organizational	requirements	and	challenges.	The	phases	of	IPv6	adoption	are	explored
with	special	attention	on	phase	1	tasks	that	entail	the	lowest	risk	and	cost	to	the	existing
production	network	operation.

Chapter	4,	IPv6	Subnetting

Chapter	4	explores	the	methods	and	concepts	of	IPv6	subnetting	in	the	context	of	address
planning	(and	in	contrast	to	legacy	practices	in	IPv4).	Nibble-boundary	subnetting	and	its
benefits	are	introduced	along	with	hierarchical	subnet	grouping.	Additional	subnetting
methods	are	reviewed,	and	numerous	examples	provide	an	opportunity	for	the	reader	to
become	more	comfortable	working	with	hexadecimal.

Part	II
Chapter	5,	IPv6	Address	Planning	Concepts

The	principles	and	techniques	that	will	guide	the	reader’s	IPv6	address	planning	efforts
are	covered	in	Chapter	5.	These	include	the	various	allocation	methods,	as	well	as
planning	frameworks	that	have	proven	the	most	useful	for	other	IPv6	adoption	initiatives.
The	key	idea	of	site	definition	is	covered	as	is	the	method	of	assigning	subnets	by	location
and	function.	These	and	other	foundational	concepts	aim	to	assist	the	reader	in	designing
an	IPv6	address	plan	that	is	both	immediately	effective,	as	well	as	long	lasting.

Chapter	6,	Getting	IPv6	Addresses

IPv6	addresses	are	readily	available	through	ISPs	or	Regional	Internet	Registries.	In	this
chapter,	readers	will	learn	typical	IPv6	allocation	types	and	sizes.	The	standards	and



administrative	policies	guiding	these	allocations	will	be	explored.	Using	the	information
provided	in	the	previous	chapters,	the	reader	will	scope	their	IPv6	address	plan	to
determine	the	appropriate	size	and	type	of	IPv6	allocation	required.

Chapter	7,	Creating	an	IPv6	Addressing	Plan

This	chapter	brings	together	the	concepts	and	methods	of	the	previous	chapters	to	walk	the
reader	through	IPv6	address	planning	examples.	Techniques	such	as	consistent
hierarchical	subnetting	using	nibble	boundaries	and	the	encoding	of	functional	and
geographical	significance	into	allocated	subnet	prefixes	will	be	applied.	These	examples
will	help	demonstrate	how	the	abundant	address	space	available	with	most	IPv6
allocations	provides	new	opportunities	for	building	an	operationally	efficient	address	plan.

Part	III
Chapter	8,	Working	with	IPAM	and	DDI

DDI	(DNS,	DHCP,	and	IP	Address	Management)	products	and	features	are	helping
network	administrators	and	IT	managers	effectively	run	their	networks.	Chapter	8
introduces	DDI	and	reviews	how	aspects	of	IPv6	(e.g.,	the	32-character	hexadecimal
format	of	the	IPv6	address)	create	new	operational	challenges	for	managing	and
monitoring	change.	Auto-addressing	via	DHCPv6	and	DDNS	(Dynamic	DNS)	offer	more
scalable	and	flexible	methods	for	deploying	and	tracking	hosts.	Readers	will	learn	the	key
features	of	DDI,	as	well	as	some	of	its	IPv6	capabilities.

Chapter	9,	Managing	Growth	and	Change

Networks	are	organic	entities	that	change	and	grow	(or	shrink!)	over	time.	In	this	chapter,
we	review	methods	for	IPv6	renumbering	that,	combined	with	abundant	addressing,	will
allow	for	easier	network	scale	and	integration.	In	addition,	we’ll	take	a	look	at	some	of	the
next-generation	network	technologies	likely	to	create	new	integration	and	address
planning	challenges	—	technologies	like	cloud	and	the	Internet	of	Things	(IoT),	which	are
rapidly	becoming	part	of	the	networking	landscape	for	enterprises.

Chapter	10,	Keeping	Your	IPv6	Addresses	Reachable

In	Chapter	10,	we’ll	learn	some	of	what	we	need	to	know	to	help	keep	our	IPv6	addresses
reachable.	IPv6	routing	protocols	will	be	reviewed	along	with	the	pros	and	cons	of
adopting	each.	We’ll	examine	some	of	the	ways	in	which	particular	protocols	have	been
optimized	to	increase	resiliency	or	conserve	router	resources	when	running	both	IPv4	and
IPv6	(dual-stack).	We’ll	also	look	at	the	impact	of	IPv6	packet	and	prefix	size	on	routing
table	limits.	Finally,	securing	the	global	IPv6	routing	table	will	be	discussed	along	with
the	associated	ACL	creation	and	maintenance	best-practices.



Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP

This	icon	signifies	a	tip,	suggestion,	or	general	note.

WARNING

This	icon	indicates	a	warning	or	caution.
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/ipv6_address_plan.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia
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Chapter	1.	Where	We’ve	Been,	Where
We’re	Going



Introduction
I	see	it,	but	I	don’t	believe	it.

—	Georg	Cantor

The	standard	LAN	interface	assignment	in	IPv6	is	a	/64.	Or,	to	be	more	explicit,	a	subnet
with	64	bits	set	aside	for	network	identification	and	64	bits	reserved	for	host	addresses.	(If
this	is	unfamiliar	to	you,	don’t	fret.	We’ll	review	the	basic	rules	of	IPv6	addressing	in	the
second	chapter.)	As	it	happens,	64	bits	of	host	addressing	makes	for	a	pretty	large	decimal
value:

18,446,744,073,709,551,616

It’s	cumbersome	to	represent	such	large	values,	so	let’s	use	scientific	notation	instead	(and
round	the	value	down,	too):

That’s	a	pretty	big	number	(around	18	quintillion)	and	in	IPv6,	if	we’re	following	the
rules,	we	stick	it	on	a	single	LAN	interface.	Here’s	what	that	might	look	like	in	common
router	configuration	syntax	(Cisco	IOS,	in	this	case):

!

interface	FastEthernet0/0

	ipv6	address	2001:db8:a:1::1/64

Now	if	someone	were	to	ask	you	to	configure	the	same	interface	for	IPv4,	what	is	the	first
question	you’d	ask?	Most	likely	some	variation	of	the	following:

“How	many	hosts	are	on	the	LAN	segment	I’m	configuring	the	interface	for?”

The	reason	we	ask	this	question	is	that	we	don’t	want	to	use	more	IPv4	addresses	than	we
need	to.	In	most	situations,	the	answer	would	help	determine	the	size	of	the	IPv4	subnet
we	would	configure	for	the	interface.	Variable	Length	Subnet	Masking	(VLSM)	in	IPv4
provides	the	ability	to	tailor	the	subnet	size	accordingly.

This	practice	was	adopted	in	the	early	days	of	the	Internet	to	conserve	public	(or	routable)
IPv4	space.	But	chances	are	the	LAN	we’re	configuring	is	using	private	address	space[1]
and	Network	Address	Translation	(NAT).	And	while	that	doesn’t	give	us	anywhere	close
to	the	number	of	addresses	we	have	at	our	disposal	in	IPv6,	we	still	have	three	respectably
large	blocks	from	which	to	allocate	interface	assignments:

10.0.0.0/8
172.16.0.0/12
192.168.0.0/16

Since	we	can’t	have	overlapping	IP	space	in	the	same	site	(at	least	not	without	VRFs	or
some	beastly	NAT	configurations),	we’d	need	to	carve	up	one	or	more	of	those	private
IPv4	blocks	further	to	provide	subnets	for	all	the	interfaces	in	our	network	and,	more
specifically,	host	addresses.

But	in	IPv6,	the	question	of	“How	many	hosts	are	on	the	network	segment	I’m
configuring	the	interface	for?”,	which	is	so	commonplace	in	IPv4	address	planning,	has	no
relevance.



To	see	why,	let’s	assume	x	is	equal	to	the	answer.	Then	we’ll	define	n	as	the	ratio	of	the
addresses	used	to	the	total	available	addresses:

Now	we	can	quantify	how	much	of	the	available	IPv6	address	space	we’ll	consume.	But
the	value	for	x	can’t	ever	be	larger	than	the	maximum	number	of	hosts	we	can	have	on	an
interface.	What	is	that	maximum?

Recall	that	a	router	or	switch	has	to	keep	track	of	the	mappings	between	layer	2	and	layer
3	addresses.	This	is	done	through	Address	Resolution	Protocol	(ARP)	in	IPv4	and
Neighbor	Discovery	(ND)	in	IPv6.[2]	Keeping	track	of	these	mappings	requires	router
memory	and	processor	cycles,	which	are	necessarily	limited.	Thus,	the	maximum	of	x	is
typically	in	the	range	of	a	few	thousand.

This	upper	limit	of	x	ensures	that	n	will	only	ever	be	microscopically	small.	For	example,
let’s	assume	a	router	or	switch	could	support	a	whopping	10,000	hosts	on	a	single	LAN
segment:

So	unlike	IPv4,	it	doesn’t	matter	whether	we	have	2,	200,	or	2,000,000	hosts	on	a	single
LAN	segment.	How	could	it	when	the	total	number	of	addresses	available	in	the	subnet	of
a	standard	interface	assignment	is	more	than	4.3	billion	IPv4	Internets?

In	other	words,	the	concepts	of	scarcity,	waste,	and	conservation	as	we	understand	them	in
relation	to	IPv4	host	addressing	have	no	equivalent	in	IPv6.

TIP

In	IPv6	addressing,	the	primary	concern	isn’t	how	many	hosts	are	in	a	subnet,	but	rather	how	many	subnets	are
needed	to	build	a	logical	and	scalable	address	plan	(and	more	efficiently	operate	our	network).

IPv4	only	ever	offered	a	theoretical	maximum	of	around	4.3	billion	host	addresses.[3]	By
comparison,	IPv6	provides	3.4x1038	(or	340	trillion	trillion	trillion).	Because	the	scale	of
numerical	values	we’re	used	to	dealing	with	is	relatively	small,	the	second	number	is	so
large	its	significance	can	be	elusive.	As	a	result,	those	working	with	IPv6	have	developed
many	comparisons	over	the	years	to	help	illustrate	its	difference	in	size	from	IPv4.



All	the	Stars	in	the	Universe…
Astronomers	estimate	that	there	are	around	400	billion	stars	in	the	Milky	Way.	Galaxies,
of	course,	come	in	different	sizes,	and	ours	is	perhaps	on	the	smallish	side	(given	that	their
are	elliptical	galaxies	with	an	estimated	100	trillion	stars).	But	let’s	assume	for	the	sake	of
discussion	that	400	billion	stars	per	galaxy	is	a	good	average.	With	170	trillion	galaxies
estimated	in	the	known	universe,	that	results	in	a	total	of	6.8x1025	stars.

Yet	that’s	still	5	trillion	times	fewer	than	the	number	of	available	IPv6	addresses!	It’s
essentially	impossible	to	visualize	a	quantity	that	large,	and	rational	people	have	difficulty
believing	what	they	can’t	see.

Cognitive	dissonance	is	a	term	from	psychology	that	means,	roughly,	the	emotionally
unpleasant	impact	of	holding	in	one’s	mind	two	or	more	ideas	that	are	entirely	inconsistent
with	each	other.	For	rational	people	(like	some	network	architects!),	it’s	generally	an
unpleasant	state	to	be	in.	To	eliminate	or	lessen	cognitive	dissonance,	we	will	usually
favor	one	idea	over	the	other,	sometimes	quite	unconsciously.	Often,	the	favored	idea	is
the	one	we’re	the	most	familiar	with.	Here	are	the	two	contradictory	ideas	relevant	to	our
discussion:

Idea	1:	We	must	conserve	IP	addresses.
Idea	2:	We	have	a	virtually	limitless	supply	of	IP	addresses.
Result:	Contradiction	and	cognitive	dissonance,	favoring	the	first,	(and	in	this	case)
more	familiar	idea.

IPV4	THINKING

Idea	1	is	the	essence	of	IPv4	Thinking,	a	disability	affecting	network	architects	new	to	IPv6	and	something	that	we’ll
often	observe,	and	illustrate	the	potential	impact	of,	as	we	make	our	way	through	the	book.

We’ll	encounter	a	couple	more	of	these	comparisons	as	we	proceed.	I	think	they’re	fun	—
they	can	tickle	the	imagination	a	bit.	But	perhaps	more	importantly,	they	help	chip	away	at
our	ingrained	prejudice	favoring	Idea	1.

From	my	own	experience,	the	sooner	we	shed	this	obsolete	idea,	the	sooner	we’ll	make
the	best	use	of	the	new	principles	guiding	our	IPv6	address	planning	efforts.

Figure	1-1	offers	a	comparison	of	scale	based	on	values	for	powers	of	2	(binary)	and	10
(decimal).



Figure	1-1.	Powers	of	2	comparison

4,294,967,296	VERSUS	50,000,000,000

Let’s	look	at	a	basic	comparison	between	two	rather	large	numbers.

Which	is	larger:	4,294,967,296	or	50,000,000,000?

If	we	re-express	these	values	in	scientific	notation	(rounding	the	first	one	up	a	bit),	it’s	easier	to	more	quickly
determine	which	is	larger:

You’re	probably	suspecting	that	I	didn’t	just	happen	to	pick	on	two	random	numbers	to	remind	you	that	scientific
notation	is	useful	in	comparing	larger	integers.	You	may	have	recognized	the	first	number	as	the	decimal	expansion	of
232,	or	the	total	number	of	addresses	defined	in	IPv4.

But	what	about	the	second	number?

That	tidy	50	billion	is	the	number	of	Internet-connected	devices	by	the	year	2020	as	predicted	by	Cisco.[4]	Since
50,000,000,000	is	greater	than	4,294,967,296	by	more	than	an	entire	order	of	magnitude,	the	IPv4-only	Internet
would	appear	to	have	a	bit	of	an	address	supply	problem.

Of	course,	this	isn’t	exactly	news.	As	we’ll	read,	early	Internet	engineers	started	musing	about	this	supply	problem	at
least	as	early	as	1988.	Even	as	the	IPv4	Internet	was	taking	off	in	the	early	1990s,	the	Internet	engineering
community	was	already	busy	developing	IPv4’s	eventual	replacement.	This	would	eventually	lead	to	the	development
of	IPv6,	a	new	network	address	with	96	more	bits	than	IPv4,	or	2128	theoretical	addresses.

The	decimal	expansion	of	2128	is	340,282,366,920,938,463,463,374,607,431,768,211,456	(or	as	we’ve	already	seen
it,	rounded	down	to	one	decimal	place	and	expressed	in	scientific	notation,	3.4x1038).	This	is	what	math	geeks	might
call	a	nontrivially	larger	value	than	either	4,294,967,296	or	50,000,000,000.	In	fact,	it’s	significantly	larger	than
4,294,967,296	times	50,000,000,000	—	around	a	trillion	trillion	times	larger![5]



In	the	Beginning
And	finally,	because	nobody	could	make	up	their	minds	and	I’m	sitting	there	in	the	Defense	Department	trying	to
get	this	program	to	move	ahead,	we	haven’t	built	anything,	I	said,	it’s	32	bits.	That’s	it.	Let’s	go	do	something.	Here
we	are.	My	fault.

—	Dr.	Vinton	G.	Cerf

Back	in	1977,	when	he	chose	32	bits	to	use	for	Internet	Protocol	addressing,	Vint	Cerf
might	have	had	trouble	believing	that	in	a	few	decades,	a	global	network	with	billions	of
hosts	(and	still	using	the	protocol	he	co-invented	with	Bob	Kahn)	would	have	already
permanently	revolutionized	human	communication.	After	all,	at	that	time,	host	count	on
the	military-funded,	academic	research	network	ARPANET	was	just	north	of	100.

By	January	1,	1983,	host	counts	were	still	modest	enough	by	today’s	standards	that	the
entire	ARPANET	could	switch	over	from	the	legacy	routed	Network	Control	Protocol	to
TCP/IP	in	one	day	(though	the	transition	took	many	years	to	plan).	By	1990,	the
ARPANET	had	been	decommissioned	at	the	ripe	old	age	of	20.	Its	host	count	at	the	time
took	up	slightly	more	than	half	of	one	/19,	approximately	300,000	IPv4	addresses	(or
about	0.007%	of	the	overall	IPv4	address	space).

Yet,	by	then,	the	question	was	already	at	least	a	couple	of	years	old:	how	long	until	32-bit
IP	addresses	run	out?



A	Dilemma	of	Scale
Concern	about	IP	address	exhaustion	had	been	rising,	due	to	the	combination	of	the
protocol’s	remarkable	success,	along	with	a	legacy	allocation	method	based	on	classful
addressing	that	was	proving	tremendously	wasteful	and	inefficient.[6]	It	was	not
uncommon	in	the	early	days	of	the	ARPANET	for	any	large	requesting	organization	to
receive	a	Class	A	network,[7]	or	16,777,214	addresses.	With	only	256	total	Class	A
networks	in	the	entire	IP	space,	a	smaller	allocation	was	obviously	more	appropriate	to
avoid	quickly	exhausting	all	remaining	IP	address	blocks.	With	65,536	addresses,	a	Class
B	network[8]	met	the	host	count	needs	of	most	organizations.	Each	Class	B	also	provided
256	Class	C	subnetworks[9]	(each	with	256	addresses),	which	could	be	used	by	the
organization	to	establish	or	preserve	network	hierarchy.	(This	allowed	for	more	efficient
network	management,	as	well	as	processor	and	router	memory	utilization.)

MULTIPROTOCOL	NETWORKS

Newer	network	engineers	and	architects	may	find	it	odd	that	at	one	point	most	computer	networks	were	multiprotocol
at	layer	3	(i.e.,	multiple	routed	protocols	co-existing	within	a	single	network	and	on	the	same	wire).	“Ships	in	the
night”	was	the	phrase	coined	to	describe	such	protocols	sharing	the	same	link	but	never	interacting	(at	least	not
without	some	form	of	layer	3	translation	courtesy	of	specialized	router	code	or	appliances).

Even	if	you	didn’t	configure	and	work	with	them	directly,	you	probably	recognize	the	names	of	these	vintage	routed
protocols	from	the	spines	of	old	computer	networking	books	at	yard	sales	or	from	war	stories	your	veteran	colleagues
told	you	down	at	the	pub.	You	may	have	even	had	the	unexpected	challenge	of	troubleshooting	these	protocols	in
legacy	networks	where	they	probably	ran	alongside	IP.	AppleTalk,	IPX,	DLSw,	DECnet,	and	NetBEUI	are	all
examples	of	routed	protocols	that	have	been	driven	to	virtual	extinction	by	the	ubiquity	of	IP.	(And	perhaps	much	like
that	of	Homo	sapiens,	the	enduring	adaptability	of	IP	has	proven	the	key	to	its	success	over	other	contenders	for
evolutionary	primacy.)

It	is	at	least	partly	for	these	reasons	that	network	admins	who’ve	been	around	a	while	are	perhaps	less	perturbed	by
the	requirement	to	adopt	a	new	protocol	that	will	run	alongside	IPv4.	(Though	I’ve	encountered	a	few	such	folks,
close	to	retirement,	who’ve	confided	that	they	hope	to	be	out	the	door	before	having	to	deploy	IPv6.	What	fun	they’ll
be	missing	out	on!)

But	allocating	Class	B	networks	in	place	of	Class	A	ones	was	merely	slicing	the	same
undersized	pie	in	thinner	slices.	The	problem	of	eventual	IP	exhaustion	remained.[10]	In
1992,	the	IETF	published	RFC	1338	titled	“Supernetting:	an	Address	Assignment	and
Aggregation	Strategy.”	It	identified	three	problems:

Exhaustion	of	Class	B	address	space
Growth	of	the	routing	tables	beyond	manageability
Exhaustion	of	all	IP	address	space

The	first	problem	was	predicted	to	occur	within	one	to	three	years.	What	was	needed	to
slow	its	arrival	were	“right-sized”	allocations	that	provided	sufficient,	but	not	an	excessive
number	of,	host	addresses.	With	only	254	usable	addresses,	Class	C	networks	were	not
large	enough	to	provide	host	addresses	for	most	organizations.	By	the	same	token,	the
65,534	addresses	available	in	a	Class	B	were	often	overkill.

The	second	problem	followed	from	the	suggested	solution	for	the	first.	If	IP	allocations
became	ever	more	granular	to	conserve	remaining	IP	space,	the	routing	table	could	grow
too	quickly,	overwhelming	hardware	resources	(this	during	a	period	when	memory	and
processing	power	were	more	prohibitively	expensive)	and	leading	to	global	routing
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instability.

The	subsequent	recommendation	and	adoption	of	Classless	Inter-Domain	Routing	(CIDR)
helped	balance	these	requirements.	Subnetting	beyond	the	bit	boundaries	of	the	classful
networks	provided	right-sized	allocations.[11]	It	also	allowed	for	the	aggregation	of	Class
C	(and	other)	subnets,	permitting	a	much	more	controlled	growth	of	the	global	routing
table.	The	adoption	of	CIDR	helped	provide	sufficient	host	addressing	and	slow	the
growth	of	the	global	routing	table,	at	least	in	the	short-term.

But	the	third	problem	would	require	nothing	less	than	the	development	of	a	new	protocol;
ideally,	one	with	enough	addresses	to	eliminate	the	problem	of	exhaustion	indefinitely.	But
that	left	the	enormous	challenge	of	how	to	transition	to	the	new	protocol	from	32-bit	IP.	At
the	time,	one	of	the	protocols	being	considered	appeared	to	recognize	the	need	to	keep
existing	production	IP	networks	up	and	running	with	a	minimum	of	disruption.	It
recommended:[12]

An	ability	to	upgrade	routers	and	hosts	to	the	new	protocol	and	add	them	to	the
network	independently	of	each	other
The	persistence	of	existing	IPv4	addressing
Keeping	deployment	costs	manageable

WHAT	WE	MEAN	BY	IPV6	ADOPTION

It’s	important	to	describe	early	what	we	mean	(and	don’t	mean)	by	IPv6	adoption.	For	most	enterprises,	it	will	mean
configuring	IPv6	on	at	least	some	portion	of	the	existing	network.	We’ll	get	into	the	details	of	how	we	logically	carve
up	the	network	for	the	purposes	of	making	IPv6	adoption	easier	in	Chapter	5.

A	second	assumption	is	that	any	IPv6	configuration	will	occur	on	devices	that	already	support	IPv4	and	that	will
continue	to	support	IPv4	(likely	for	years	to	come).	In	other	words,	IPv4	and	IPv6	will	coexist	in	production	on	the
same	network	interfaces	providing	transport	to	applications	for	the	foreseeable	future.[13]	This	dual-stack
configuration	(as	contrasted	with	IPv4	translation	to	and	from	IPv6)	is	currently	considered	the	best	practice	for	most
networks.

You’ll	notice	that	over	a	long	enough	timeline,	we	are	in	fact	migrating	or	transitioning	to	IPv6.	But	in	the	short-to-
medium	term,	we’re	just	adding	IPv6	to	our	existing	IPv4	network.	That’s	why	we	prefer	to	say	IPv6	adoption	or
IPv6	deployment	rather	than	IPv6	migration	or	transition.	It	may	seem	like	mere	semantics,	but	it	does	serve	a
purpose:	it	helps	dispel	some	of	the	FUD	(fear,	uncertainty,	doubt)	around	IPv6	for	those	who	are	just	getting	started
with	it.

When	my	boss	asked	me	to	deploy	IPv6,	I	knew	he	wasn’t	suggesting	that	we	turn	IPv4	off	after	IPv6	was	up	and
running.	Rather,	it	was	essential	to	keep	the	existing	IPv4	production	network	live	and	providing	the	services	and
applications	the	company	relied	on.	IPv6	was	then	added	to	the	network	in	tightly	controlled	phases.	For	nearly	all
organizations,	such	an	approach	will	be	more	manageable,	less	disruptive,	and	cheaper	than	a	premature	attempt	to
transition	entirely	to	IPv6	all	at	once.[14]

As	part	of	our	exploration	of	IPv6	address	planning,	we’ll	also	learn	strategies	and	methods	for	adopting	IPv6	that
have	been	reliably	successful.

The	one	protocol	meeting	these	requirements	was	known	as	SIPP-16	(or	Simple	IP	Plus)
and	was	most	noteworthy	for	offering	a	128-bit	address.	It	was	also	known	for	being
version	6	of	the	candidates	for	the	next-generation	Internet	Protocol.[15]



IPv4	Exhaustion	and	NAT
While	work	proceeded	on	IPv4’s	eventual	replacement,	other	projects	examined	ways	to
slow	IPv4	exhaustion.

In	the	early	1990s,	there	were	various	predictions	for	when	IPv4	exhaustion	would	occur.
The	Address	Lifetime	Expectations	(ALE)[16]	working	group,	formed	in	1993,	estimated
that	depletion	would	occur	sometime	between	2005	and	2011.	As	it	happened,	IANA	(the
Internet	Assigned	Numbers	Authority)	handed	out	the	last	five	routable	/8s	to	the	various
RIRs	(Regional	Internet	Registries)	in	February	2011.[17]	In	all	likelihood,	IPv4
exhaustion	would	have	occurred	much	sooner	without	the	adoption	of	NAT.

The	original	NAT	proposal	suggested	that	stub	networks	(as	most	corporate	or	enterprise
networks	were	at	the	time)	could	share	and	reuse	the	same	address	range	provided	that
these	potentially	duplicate	host	addresses	were	translated	to	unique,	globally	routable
addresses	at	the	organization’s	edge.	Initially,	only	one	reusable,	or	private,	Class	A
network	was	defined,	but	that	was	later	expanded	to	the	three	listed	at	the	beginning	of	the
chapter.

The	NAT	proposal	was	attractive	for	many	reasons.	The	obvious	general	appeal	was	that	it
would	help	slow	the	overall	rate	of	IPv4	exhaustion.	Early	enterprise	and	corporate
networks	would	have	liked	the	benefit	of	a	centralized,	locally-administered	solution	that
would	be	relatively	easy	to	own	and	operate.	From	an	address	planning	standpoint,	they
would	also	get	additional	architectural	flexibility.	Where	a	stub	network	might	only
qualify	for	a	small	range	of	routable	space	from	an	ISP,	with	NAT	an	entire	/8	could	be
used.	This	would	make	it	possible	to	group	internal	subnets	according	to	location	or
function	in	a	way	that	maximized	operational	efficiency	(and	as	we’ll	see	in	Chapters	4
and	5,	something	IPv6	universally	allows	for).	Privately	addressed	networks	could	also
maintain	their	addressing	schemes	without	having	to	renumber	if	they	switched	providers.

But	NAT	also	had	major	drawbacks,	many	of	which	persist	to	this	day.	The	biggest
liability	was	(and	is)	that	it	broke	the	end-to-end	model	of	the	Internet.	The	translation	of
addresses	anywhere	in	the	session	path	meant	that	hosts	were	no	longer	communicating
directly.	This	had	negative	implications	for	both	security	and	performance.	Applications
that	had	been	written	based	on	the	assumption	that	hosts	would	communicate	directly	with
each	other	could	break.	For	instance,	a	NAT-enabled	router	would	have	to	exchange	local
for	global	addresses	in	application	flows	that	included	IPv4	address	literals	(like	FTP).
Even	rudimentary	TCP/IP	functions	like	packet	checksums	had	to	be	manipulated	(in	fact,
the	original	RFC	contained	sample	C	code	to	suggest	how	to	accomplish	this).[18]

Whatever	NAT’s	ultimate	shortcomings,	there’s	no	question	that	it	has	been	enormously
successful	in	terms	of	its	adoption.	And	to	be	fair,	it	has	helped	extend	the	life	of	IPv4	and
provide	for	a	more	manageable	deployment	of	IPv6	following	its	formal	arrival	in	1998.



SOME	FUNDAMENTAL	DESIGN	PRINCIPLES

Before	we	proceed	with	the	specifics	of	IPv6	address	planning,	it’s	probably	worthwhile	to	articulate	and	examine
some	fundamental	design	principles	where	networks	in	general	(and	IP	addressing	plans	in	particular)	are	concerned.
These	principles	are	not	unique	to	specific	addressing	protocols:	they	suggest	the	essence	of	what	a	network	is	and
does.	A	different	way	of	arriving	at	the	same	requirements	might	be	to	ask	“What	problem(s)	are	we	trying	to	solve?”

It	turns	out	that	these	basic	requirements	and	first	principles	are	really	quite	simple	to	articulate,	if	rather	more
difficult	to	instantiate	thoroughly	and	maintain	over	time.	They	include:

Unique	addressability

Every	host	or	node	on	a	network	must	be	uniquely	addressed	or	somehow	distinguishable	from	other	hosts.[19]	IP
is	currently	the	dominant	logical	addressing	method,	while	hardware	addresses	(typically	MAC)	identify
individual	physical	interfaces.	A	viable	network	design	requires	a	logical	addressing	method	that	will	provide
sufficient	unique	addresses	(such	as	IPv6).

Manageability

Networks	must	be	manageable,	meaning	that	the	methodology	and	tasks	required	to	build	and	maintain	the
network	must	be	well	understood,	relatively	easy	to	replicate,	and	generally	based	on	well-known	protocols.

Scale

For	a	network	to	meet	the	needs	of	the	business	or	organization,	new	users,	applications,	and	services	must	be
relatively	easy	to	add	and	support.	Any	network	design	will	need	to	plan	for	manageable	(and	cost-effective)
growth.

Cost-effectiveness

As	much	as	we	might	prefer	otherwise,	all	network	design	must	bow	to	economic	realities.	As	the	old	engineering
proverb	states:	“Fast,	reliable,	cheap:	choose	any	two.”	But	more	often	than	not,	we’re	obligated	time	and	again	to
pick	cheap	first	and	hope	for	at	least	a	modicum	of	fast	and/or	reliable.	This	can	greatly	challenge	our	ability	to
accomplish	our	other	design	principles.

Flexibility

As	much	as	engineers	might	like	to	joke	that	the	network	would	be	great	without	all	those	pesky	users,	a	network
should	ideally	be	configurable	to	support	any	existing	or	emerging	business	or	organizational	requirements.	The
difficulty	in	achieving	such	flexibility	with	traditional	networking	protocols	has	been	one	of	the	most	persistent
challenges	in	network	engineering	and	has	led	to	the	development	of	technologies	like	software-defined
networking	(SDN).

Resilience

All	networks	require	some	measure	of	fault	tolerance	and	resilience.	In	cases	where	the	mission	of	the	network	is
merely	to	enhance	general	business	productivity,	such	resilience	may	be	adequately	provided	by	the	underlying
protocols	and	good	basic	network	design.	However,	the	consequence	of	a	network	outage	for	some	organizations
could	be	loss	of	revenue	(or	even	life),	and	the	network	design	must	accommodate	this	fact.

Simplicity

Network	design	reflects	an	aesthetic	that	extends	from	the	disciplines	of	math,	science,	and	technology.	This
aesthetic	often	prizes	the	elegance	of	the	simplest	solution	for	any	complex	problem.	In	network	design,	this	kind
of	simplicity	often	correlates	to	efficiency	and	the	realization	of	our	other	design	principles,	which	in	turn	makes
any	network	easier	to	build	and	run.[20]

You	might	notice	that	none	of	these	articulated	first	principles	demand	a	particular	set	of	specific	protocols,	whether
old	or	new,	established	or	emerging.	The	importance	of	this	is	difficult	to	overstate	at	this	particular	moment	in	the
history	of	the	Internet.	The	above	first	principles	are	likely	to	be	realized	through	whatever	combination	of
technologies	create	the	path	of	least	technological	and	financial	resistance	in	turning	on	the	next	generation	of
Internet	and	network	services.	Hyper-scale	data	centers,	public	and	private	cloud	services,	virtualization,	the	Internet
of	Things,	and	emerging	SDN	and	NFV	(network	function	virtualization)	solutions	challenge	traditional	protocols
and	entrenched	architectural	and	operational	paradigms	in	profound	ways.
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IPv6	Arrives
The	first	formal	specification	for	IPv6	was	published	late	in	1998,	nearly	25	years	after	the
first	network	tests	using	IPv4.[21]

Adoption	of	IPv6	outside	of	government	and	academia	was	slow	going	in	the	early	years.

In	the	United	States,	the	federal	government	has	used	mandates	(with	moderate	success)	to
drive	IPv6	adoption	among	government	agencies.	A	2005	mandate	included	requirements
that	all	IT	gear	should	support	IPv6	to	the	“maximum	extent	practicable”	and	that	agency
backbones	must	be	using	IPv6	by	2008.[22]	These	requirements	almost	certainly	helped
accelerate	the	maturation	of	IPv6	features	and	support	across	many	vendors’	network
infrastructure	products.	IPv6	feature	parity[23]	with	IPv4	was	also	greatly	enhanced	by	the
work	of	the	IETF	during	this	period:	nearly	200	IPv6	RFCs	were	published	(as	well	as
hundreds	of	IETF	drafts).

IPv6	adoption	among	enterprise	networks	was	negligible	during	this	same	time	period.
With	so	few	hosts	on	the	Internet	IPv6-enabled,	it	made	little	sense	to	make	one’s	website
and	online	resources	available	over	it.	Meanwhile,	IPv4	private	addressing	in	combination
with	NAT	at	the	edge	of	the	IT	network	reduced	or	eliminated	any	need	to	deploy	IPv6
internally.



Why	Not	a	“Flag	Day”	for	IPv6?
Why	not	just	set	a	day	and	switch	all	hosts	and	networks	over	from	IPv4	to	IPv6?	After
all,	it	worked	for	the	transition	from	NCP	to	IP	back	in	1982.	It	should	be	obvious	that
even	by	1998,	the	Internet	had	grown	to	such	an	extent	that	a	“flag	day”	was	no	longer
technically	feasible.	Even	in	relatively	closed	environments,	flag	days	are	difficult	to	pull
off	successfully	—	see	Figure	1-2	for	proof.

Much	of	the	discussion	around	IPv6	adoption	in	this	period	focused	on	the	possible
appearance	of	a	“killer	app,”	one	that	would	take	advantage	of	some	technical	aspect	of
IPv6	not	available	in	IPv4.[24]	Such	an	application	would	incentivize	broad	IPv6	adoption
and	create	an	incontrovertible	business	case	for	those	parties	waiting	on	the	sidelines.	But
without	widespread	deployment	of	IPv6,	there	was	little	hope	that	such	an	application
would	emerge.	Thus,	a	classic	Catch-22	situation.[25]

Figure	1-2.	Stockholm,	Sweden	in	1967	on	the	day	they	switched	from	left-side	to	right-side	driving.

To	try	to	interrupt	this	vicious	cycle,	the	Internet	Society	in	2008	began	an	effort	to
encourage	large	content	providers	to	make	their	popular	websites	available	over	IPv6.
This	effort	culminated	in	a	plan	for	a	June	8,	2011	“World	IPv6	Day”	during	which
Google,	Yahoo,	Facebook,	and	any	others	that	wished	to	participate	would	make	their
primary	domains	(e.g.,	www.google.com)	and	related	content	available	over	IPv6	for	24
hours.	This	would	give	the	Internet	a	day	to	kick	the	tires	of	IPv6	and	take	it	out	for	a	test
drive,	and	in	the	process,	gain	operational	wisdom	from	a	day-long	surge	of	IPv6	traffic.

The	event	was	successful	enough	to	double	IPv6	traffic	on	the	Internet	(from	0.75%	to
1.5%!)	and	inspired	the	World	IPv6	Launch	event	the	following	year,	which	encouraged
anyone	with	publicly	available	content	to	make	it	available	over	IPv6	permanently.

More	recently,	large	broadband	subscriber	and	mobile	companies	like	Comcast	and



Verizon	are	reporting	that	a	third	to	more	than	half	of	their	traffic	now	runs	over	IPv6,	and
global	IPv6	penetration	as	measured	by	Google	has	jumped	from	2%	to	4%	in	the	last	nine
months	(Figure	1-3).[26]

Figure	1-3.	Percentage	of	IPv6	traffic	accessing	Google	services



Conclusion
As	mentioned	previously,	IANA	had	already	allocated	the	last	of	the	routable	IPv4	address
blocks	in	2011.	By	April	of	that	year,	APNIC,	the	Asian-Pacific	RIR	(not	to	be	confused
with	the	Union-Pacific	RR),	had	exhausted	its	supply	of	IPv4	(technically	defined	as
running	down	to	their	last	/8	of	IPv4	addresses).	And	in	September	of	2012,	RIPE,	in
Europe,	had	reached	the	same	status.	ARIN	announced	that	it	was	entering	the	IPv4
exhaustion	phase	in	April	2014,	and	Latin	America’s	LACNIC	followed	in	June,	just	two
months	later	(Figure	1-4).	Africa	is	good	for	now	with	AFRINIC	having	enough	IPv4	to
ostensibly	last	through	2019.)

Figure	1-4.	IPv4	exhaustion	by	region

To	put	it	bluntly,	by	the	time	you’re	reading	this	book,	IPv4	will	most	likely	be	exhausted
everywhere	but	in	Africa.	And	as	we’ve	learned,	IPv6	adoption	is	accelerating,	by	some
metrics,	exponentially.	To	stay	connected	to	the	whole	Internet,	you’re	going	to	need	IPv6
addresses	and	an	address	plan	to	guide	their	deployment.

THE	UNEQUAL	DISTRIBUTION	OF	IPV4

Another	critical	factor	that	is	impacting	the	rate	of	IPv6	adoption	is	the	unequal	distribution	of	IPv4	addresses
globally.

The	Internet	originated	and	saw	its	early	growth	concentrated	in	the	US.	Early	allocations	of	IPv4	addresses,
especially	of	the	class	A	type,	eventually	led	to	a	disproportionate	global	distribution	of	IPv4,	one	that	favored	the	US
(Figure	1-5).[27]

Figure	1-5.	Percentage	of	IPv4	/8s	compared	to	human	population	by	RIR

Over	time,	as	other	regions	began	to	expand	their	Internet	penetration,	this	uneven	distribution	of	addresses,
combined	with	the	explosive	growth	of	mobile	Internet,	very	likely	led	to	earlier	exhaustion	of	IPv4	in	population-
dense	Asia	and	Europe.

A	further	consequence	of	this	rapid	growth	and	suboptimal	distribution	of	addresses	has	been	the	proliferation	of
entries	in	the	global	IPv4	routing	table,	which	has	recently	exceeded	512K	entries.	Because	many	older	routers	in	the
core	of	the	Internet	have	memory	or	configuration	limits	on	total	IPv4	prefixes	set	at	512K,	this	has	caused	outages
due	to	routes	above	and	beyond	the	512K	limit	being	dropped.

We’ll	discuss	this	issue	in	relation	to	IPv6	routing	in	Chapter	10.



[1]	RFC	1918,	Address	Allocation	for	Private	Internets.

[2]	RFC	4861,	Neighbor	Discovery	for	IP	version	6	(IPv6).	Keep	in	mind	that	RFCs	are	often	updated	(or	even
obsoleted)	by	new	ones.	When	referring	to	them,	check	the	updated	by	and	obsoletes	cross-references	at	the	top	of	the
RFC	to	make	sure	you	have	the	most	up-to-date	information	you	might	need.

[3]	After	reserved	addresses	(such	as	experimental,	multicast,	etc.)	are	deducted,	IPv4	offers	closer	to	3.7	billion	globally
unique	addresses.

[4]	Trends	such	as	mobile	device	proliferation	and	the	Internet	of	Things	(or	Everything)	have	produced	wildly	divergent
estimates	for	Internet-connected	devices	by	2020.	They	range	from	20	billion	on	the	low	end	all	the	way	up	to	200
billion.

[5]	And	in	case	it	isn’t	obvious,	the	entire	50	billion	devices	would	fit	quite	neatly	into	one	/64	(360	million	times,
actually).

[6]	The	success	of	IPv4	was	(and	is)	at	least	partly	a	function	of	its	remarkable	simplicity.	The	formal	protocol
specification	contained	in	RFC	791	is	less	than	50	pages	long	and	notorious	for	its	modest	scope:	providing	for
addressing	and	fragmentation.

[7]	A	/8	in	Classless	Inter-Domain	Routing	(CIDR)	notation.

[8]	A	/16	in	CIDR	notation.

[9]	A	/24	in	CIDR	notation.

[10]	From	the	remaining	allocatable	IP	space	to	be	carved	up	for	Class	B	networks,	you	had	to	subtract	the	Class	A
networks	already	allocated.

[11]	This	method	of	“right-sizing”	subnets	for	host	counts	using	CIDR	would	become	an	entrenched	architectural
method	that,	as	we’ll	learn,	can	be	a	serious	impediment	to	properly	designing	your	IPv6	addressing	plan.

[12]	And	as	you’ll	discover	in	Chapter	3,	these	IPv6	adoption	requirements	are	still	very	relevant.

[13]	Enabling	the	forward	march	of	human	progress,	as	well	as	the	reliable	delivery	of	cat	videos.

[14]	It’s	worth	noting	that	some	organizations	running	a	dual-stack	architecture	today	are	taking	steps	to	make	their
networks	IPv6-only.	For	example,	Facebook	is	planning	on	removing	IPv4	completely	from	its	internal	network	within
the	next	year.	Reasons	for	such	a	move	may	vary	among	organizations,	but	the	biggest	motivator	for	running	a	single
stack	is	likely	the	aniticipated	reductions	to	the	complexity	and	cost	of	network	operations	(e.g.,	less	time	to	troubleshoot
network	issues,	perform	maintenance	and	configuration,	etc.).

[15]	The	also-rans	were	ST2	and	ST2+,	aka	IPv5	and	IPv7,	which	offered	a	64-bit	address.	Other	next-generation
candidate	replacements	for	IP	included	TUBA	(or	TCP/UDP	Over	CLNP-Addressed	Networks)	and	CATNIP	(or
Common	Architecture	for	the	Internet).

[16]	Based	on	the	acronym,	and	their	affinity	for	hotel	bars	as	the	best	setting	for	getting	things	done	at	meetings,	I
shouldn’t	need	to	explicitly	mention	that	this	was	an	IETF	effort.

[17]	More	information	on	the	RIRs,	their	function	and	policies,	is	provided	in	Chapter	6.

[18]	RFC	1631,	The	IP	Network	Address	Translator	(NAT).

[19]	In	IPv6,	we	extend	this	requirement	to	the	interface.

[20]	As	we’ll	explore	in	Chapter	3	when	we	discuss	what	we	mean	by	IPv6	adoption,	the	path	to	realizing	this	principle
isn’t	necessarily	a	direct	one.

[21]	RFC	2460,	Internet	Protocol,	Version	6	(IPv6)	Specification.	Also,	formal	in	this	case	refers	to	the	IETF	draft
standard	stage	as	described	in	RFC	2026,	The	Internet	Standards	Process	—	Revision	3.	It’s	perhaps	important	to	keep
in	mind	that	earlier	IPv6	RFCs	(especially	proposed	standard	RFC	1883	from	December	of	1995)	provided
specifications	critical	to	faciliating	the	development	of	the	“rough	consensus	and	running	code”	(that	famous	founding
tenet	of	the	IETF)	for	IPv6.

http://bit.ly/rfc-1918
http://bit.ly/rfc-4861
http://bit.ly/rfc-791
http://bit.ly/rfc-1631
http://bit.ly/rfc-2460
http://bit.ly/rfc-2026
http://bit.ly/rfc-1883


[22]	See	the	official	Transition	Planning	for	Internet	Protocol	Version	6	(IPv6)	memorandum.

[23]	Feature	parity,	as	you’ve	probably	inferred,	refers	to	the	equivalent	support	and	performance	for	a	given	feature	in
both	IPv4	and	IPv6.	We’ll	discuss	this	in	more	detail	in	Chapter	3.

[24]	As	we	have	come	to	recognize,	the	“killer	app”	turned	out	to	be	the	Internet	itself.	Without	IPv6,	the	Internet	cannot
continue	to	grow	in	the	economical	and	manageable	way	required	for	its	potential	scale.

[25]	“There	was	only	one	catch	and	that	was	Catch-22,	which	specified	that	a	concern	for	one’s	own	safety	in	the	face	of
dangers	that	were	real	and	immediate	was	the	process	of	a	rational	mind…Orr	would	be	crazy	to	fly	more	missions	and
sane	if	he	didn’t,	but	if	he	was	sane	he	had	to	fly	them.	If	he	flew	them	he	was	crazy	and	didn’t	have	to;	but	if	he	didn’t
want	to	he	was	sane	and	had	to.	Yossarian	was	moved	very	deeply	by	the	absolute	simplicity	of	this	clause	of	Catch-22
and	let	out	a	respectful	whistle.	‘That’s	some	catch,	that	Catch-22,’	he	observed.	‘It’s	the	best	there	is,’	Doc	Daneeka
agreed.”	-Joseph	Heller,	Catch-22.

[26]	Google	IPv6	Statistics.	In	the	US,	this	figure	is	approaching	10%	—	or	around	22.3	million	users.	IPv6	expert	and
O’Reilly	author	Silvia	Hagen	recently	calculated	that	global	user	adoption	of	IPv6	will	reach	50%	by	2017.

[27]	Source:	Internet	World	Stats.

http://bit.ly/ipv6-memo
http://bit.ly/google-ipv6-stats
http://www.internetworldstats.com/stats.htm




Part	I.	Preparation
The	next	three	chapters	seek	to	establish	some	critical	context	for	the	IPv6	address
planning	principles	in	the	chapters	that	follow.	You’re	welcome	to	think	of	it	as	kind	of	a
crash	course	in	IPv6:	just	the	right	depth	of	the	right	kind	of	IPv6	knowledge	to	create	a
better	foundation	for	our	main	topic	and	task	at	hand.	If	the	essentials	of	IPv6	addressing
and	adoption	are	already	old	hat	to	you,	please	feel	free	to	skip	ahead	to	Part	II	to	get	right
to	the	design	principles	and	practices.





Chapter	2.	What	You	Need	to	Know
About	IPv6	Addressing
We’ll	need	to	be	familiar	with	the	basics	of	IPv6	addressing	as	we	learn	and	apply	IPv6
address	planning	concepts	and	methods.	If	you	already	know	this	topic	well,	feel	free	to
skip	ahead	to	the	next	chapter.

www.allitebooks.com

http://www.allitebooks.org


Representation
Let’s	review	the	basic	representation	of	the	IPv6	address.	The	IPv6	address	is	128	bits
long:

00100000	00000001	00001101	10111000	00000000	00010000	10101010	00100000

00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000001

Easy	to	write,	easy	to	remember	—	that	is,	if	you’re	a	computer[28]	or	a	savant.

For	everyone	else,	it’s	easier	to	manage	in	its	usual	form,	presented	as	8	hextets[29]	(each
with	up	to	4	hexadecimal	values)	of	16	bits,	separated	by	colons:

2001:0db8:0010:aa20:0000:0000:0000:0001

NOTE

You’ll	notice	that	we’re	consistently	using	lowercase	letters	in	our	examples.	IPv6	standards	recommend	lowercase
letters	when	presenting	addresses.	But	that’s	just	for	human	consumption:	when	formatting	IPv6	addresses	for
internal	storage	in	a	database	or	application,	uppercase,	lowercase,	or	any	combination	of	the	two	can	be	used.	Also,
various	OSes	and	types	of	networking	equipment	may	present	(or	allow	for	configuration	of)	an	IPv6	address	in
either	uppercase	or	lowercase	with	no	impact	on	functionality.	However,	keep	in	mind	that	consistent	address
representation	becomes	important	to	find	addresses	in	databases	and	spreadsheets	more	easily	(especially	if	you	don’t
have,	or	can’t	soon	deploy,	an	IPAM	solution).	A	good	choice	for	such	representation	might	be	the	full	(i.e.,	32-
character)	address	with	lowercase	letters	like	the	example	shown	previously.

Even	better,	we	can	simplify	the	presentation	of	the	address	by	following	two	easy	rules	to
shorten	it:

1.	 Leading	zeros	in	any	hextet	can	be	dropped:
2001:db8:10:aa20:0:0:0:1

2.	 One	set	of	contiguous	hextets	of	zeros	can	be	replaced	with	a	double-colon:
2001:db8:10:aa20::1

WARNING

Note	that	the	second	rule	can	only	be	used	once	per	address.	If	you	did	it	twice	in	an	address,	you’d	have	no	way	of
unambiguously	determining	how	many	hextets	had	been	replaced	with	each	double-colon.	And	since	you	may	have
more	than	one	group	of	contiguous	zero	hextets,	it’s	generally	advised	that	you	shorten	the	longest	one.[30]

You	may	have	noticed	that	after	we	apply	the	two	rules	to	shorten	our	example,	it	has	only
two	more	significant	characters	than	the	longest	possible	IPv4	address.	With	a	little
planning,	IPv6	addresses	can	often	be	just	as	easy	to	read	and	remember	as	IPv4.	(But	as
we’ll	see,	most	host	addresses	end	up	being	much	longer	and	require	DNS	to	track	and
manage	them	more	easily).



MIDNIGHT	AT	THE	DEAD	BEEF	CAFE

If	you’ve	ever	played	Boggle™	(or	any	of	its	variants),	you	may	have	found	it	amusing	to	see	how	many	words	you
can	come	up	with,	given	a	limited	number	of	letters.[31]	Because	IPv6	addresses	use	hexadecimal	representation,	the
letters	a	through	f	(along	with	numbers	substituting	for	letters)	are	available	to	rearrange	into	recognizable	words.
Since	IPv6	has	been	around	for	more	than	a	decade,	examples	of	this	kind	of	word	play	are	now	common:

2001:db8:dead:beef::1

2001:db8:cafe:babe::A90

And	so	on.

The	most	famous	practical	example	of	this	comes	courtesy	of	a	well-known	social	networking	site:
				2a03:2880:2050:3f07:face:b00c::1

Cute,	but	should	any	such	addresses	generally	be	used	in	production?	As	with	any	design	decision,	there	are	trade-
offs	to	keep	in	mind.

It’s	possible	that	it	will	be	that	much	easier	for	operations	personnel	to	keep	track	of	network	locations	or	functions
by	encoding	recognizable	and	memorable	words	into	IPv6	addresses	or	prefixes.	(We’ll	see	a	more	general	example
of	this	technique	later.)

But	it’s	also	possible	that	malicious	scans	of	IPv6	address	space	could	be	made	easier	with	dictionaries	of	well-known
words	constructed	using	hexadecimal	characters	and	common	substitutions.

Security	concerns	aside,	while	possibly	entertaining	and	memorable,	such	addresses	aren’t	generally	flexible	or
scalable	enough	for	a	production	network,	but	may	be	perfectly	suitable	when	configuring	IPv6	prefixes	and
addresses	for	lab	environments	and	testing	purposes	(as	well	as	making	packet	captures	more	readable	for	training	or
demonstration).[32]



Structure
So	now	that	we’ve	looked	at	how	the	128	bits	of	the	IPv6	address	can	be	more
manageably	represented,	let’s	look	at	how	those	bits	are	structured.

Returning	to	the	early	days	of	Ye	Olde	IPv4e,	recall	that	classful	addresses,	more
specifically	class	A	and	class	B	networks,	were	the	standard	allocation	sizes	for	most
organizations.	Early	networks,	though,	were	unlikely	to	need	anywhere	close	to	the	16.7
million	class	A	(or	even	65.5K	class	B)	IP	addresses	for	host	addressing.	From	the
standpoint	of	host	addressing	requirements,	such	extravagance	is	somewhat	like	asking	for
a	new	pair	of	pajamas	for	your	birthday	and	instead	getting	a	circus	tent	to	wear	to	bed.	It
seems	a	bit	short-sighted	in	hindsight	given	all	the	tweaking	of	subnets	using	VLSM	and
CIDR	we’ve	had	to	do	in	the	intervening	years.	But	as	we’ve	also	already	mentioned,	the
tremendous	success	and	explosive	growth	of	the	Internet	was	still	many	years	in	the
future.

In	the	meantime,	sufficient	host	addressing	was	only	one	of	the	requirements	of	IP
addressing	anyway.	The	other	requirement	was	met	quite	handily	by	all	those	class	A	and
B	allocations:	namely,	a	hierarchy	of	consistently	sized	networks	that	made	for	simple
prefix	aggregation	and	efficient	routing.	This,	in	turn,	kept	the	size	of	the	global	routing
table	manageable,	improving	routing	stability,	as	well	as	conserving	router	memory	and
CPU	cycles.

The	idea	was	the	right	one;	it’s	just	that	the	address	space	was	not	sufficiently	large	to
support	it	once	the	Internet	really	took	off.	The	128	bits	of	IPv6	addressing,	on	the	other
hand,	enables	both	network	hierarchy	and	prefix	aggregation,	as	well	as	sufficient	host
addressing,	all	without	running	out	of	bits.

The	most	basic	structure	of	the	IPv6	address	is	the	division	of	the	address	into	some
number	of	network	bits	for	the	subnet	prefix	and	some	number	of	host	bits	for	interface
identification.	While	theoretically	the	interface	ID	could	use	as	many	bits	as	are	left	over
after	subtracting	the	network	bits	from	the	128	bits	available	in	the	overall	address,	in
practice,	interface	IDs	are	always	64	bits	(with	subnet	prefixes	necessarily	having	no	more
than	64	bits).[33]

We’ll	be	focusing	mainly	on	the	network	(or	subnet	prefix)	portion	of	the	address,	as	we’ll
have	a	subset	of	those	bits	to	work	with	in	creating	and	maintaining	our	IPv6	address	plan.

Keep	in	mind	that	IPv6	was	designed	to	fully	utilize	64	bits	of	host	addressing.	Thus,



further	subnetting	the	64	host	bits	(i.e.,	the	right	half)	of	the	IPv6	address	is	generally	not
recommended.

For	one	thing,	address	autoconfiguration	mechanisms	rely	on	a	64-bit	host	portion	and	can
break	if	one	tries	to	configure	any	subnets	longer	than	64	bits.

For	another,	when	network	architects	new	to	IPv6	begin	to	think	about	what	to	do	with	all
of	the	IPv6	space	they’ve	been	allocated,	a	common	reaction	is	the	understandable	desire
to	further	divide	the	64	host	bits	in	order	to	reflexively	conserve	host	addresses;	just	like
the	subnets	they’re	used	to	in	IPv4	(i.e.,	“right-sized”	using	CIDR	and	VLSM	for	network
segment	host	counts).

There	are,	however,	a	few	special	use	cases	with	associated	subnets	where	such	further
subnetting	of	the	64	host	bits	is	appropriate.	We’ll	look	at	those	later	in	the	chapter.



Types
The	original	specification	for	IPv6	addressing	defined	three	general	types	of	addresses:
unicast,	multicast,	and	anycast.[34]	The	general	description	of	each	of	these	address	types
should	be	familiar	from	IPv4.

We’ll	introduce	slightly	more	formal	definitions	for	each	IPv6	address	type,	but	perhaps
the	easiest	way	to	think	of	them	is	by	the	communication	between	nodes	they’re	designed
to	enable,	as	shown	in	Table	2-1.

Table	2-1.	Node	communication	by	address	type

Address	type Node	to	node(s)	communication

Unicast 1:1

Multicast 1:Many

Anycast 1:Any

Unicast	Addresses
Strictly	speaking,	a	unicast	address	goes	on	an	interface	and	allows	packets	to	be	sent
specifically	to	that	interface.	It’s	convenient,	and	therefore	habitual,	to	think	of	hosts	as
being	configured	with	an	address	(or	addresses).	It’s	equally	common	to	think	of	unicast
communication	as	taking	place	between	two	hosts	rather	than	two	interfaces.	That’s
perfectly	appropriate	for	most	situations.	But	if	we	want	to	get	technical,	in	IPv6	a	host	is
referred	to	as	a	node.	Nodes	can	have	any	number	of	interfaces,	but	each	is	uniquely
identified	by	at	least	one	unicast	address.

IPv6	unicast	addresses	contain	several	additional	subtypes:

Loopback	address
::1/128

First	is	the	loopback	address,	already	familiar	to	us	from	IPv4	(e.g.,	127.0.0.1).	It	serves
the	same	function	in	IPv6,	allowing	the	node	to	send	packets	to	itself.[35]

Link-Local	unicast	addresses
fe80::/10

Link-Local	unicast	addresses	are	defined	by	the	first	10	bits	of	the	address	and	are
reserved	for	use	on	a	single	link.	They	play	a	critical	role	in	Neighbor	Discovery	and	auto-
address	configuration.	They	also	provide	for	improved	(i.e.,	largely	automated)	default
gateway	configuration	and	management	(as	compared	with	IPv4).	A	Link-Local	address	is
automatically	configured	on	an	interface	once	the	IPv6	stack	is	activated.[36]

Unique-Local	unicast	addresses
fc00::/7

Unique-Local	unicast	addresses	(ULA)	reserve	the	first	7	bits	of	the	address	and	are
sometimes	described	as	being	the	equivalent	of	RFC	1918	(i.e.,	private)	addresses	in	IPv4.



In	general,	they	are	redundant	where	an	organization	has	received	a	Global	Unicast
Allocation,	or	GUA	(see	the	next	entry).

Global	unicast	addresses
2000::/3

Next,	the	address	range	that	we’ll	be	spending	the	most	time	with	is	global	unicast
addresses	(GUA).[37]

TO	ULA	OR	NOT	TO	ULA

Unique-Local	addresses	(ULA)	merit	a	special	discussion.[38]	We	need	to	understand	their	benefits	and	limitations
and	recognize	when	it’s	appropriate	to	utilize	them.

ULA	are	most	often	compared	to	RFC	1918	addresses	in	IPv4.	This	is	a	useful	comparison	as	far	as	it	goes,	but	IPv6
ULA	offer	some	advantages	over	IPv4	private	addresses.

The	most	obvious	of	these	is	more	address	space	per	site.	The	standard	site	allocation	for	ULA	is	the	same	as	it	is	for
GUA:	a	/48.	Compared	to	the	largest	IPv4	private	address	allocation	of	10.0.0.0/8,	a	/48	offers	7.2x1016	times	the
number	of	addresses!

The	global	ID	defining	a	ULA	site	prefix	is	designed	to	be	allocated	in	a	pseudo-random	fashion.[39]	This	means	that
unlike	IPv4	private	addresses,	the	probability	of	any	two	ULA	prefixes	overlapping	is	extremely	low.

Since	it’s	very	unlikely	that	ULA	prefixes	would	be	identical	and	contain	overlapping	space,	consolidating	networks
after	a	merger	or	acquisition	would	be	less	problematic	than	in	IPv4.	Most	organizations	use	the	10.0.0.0/8	space
(often	more	than	once	in	the	same	large	network)	and	must	rely	on	NAT	or	VRFs	to	overcome	conflicting	address
space.

And	just	like	all	IPv6	site	allocations,	ULA	prefixes	can	offer	a	well-defined	/48	boundary	that	makes	it	easier	to
include	in	ACLs,	either	for	routing	policy	prefix	filtering	and	security	policy	firewall	rules	—	as	well	as	for	IPv6-to-
IPv6	Network	Prefix	Translation	(NPTv6)	use,	something	we’ll	look	at	a	little	more	closely	in	Chapter	9.

The	similarities	of	Unique	Local	addresses	with	RFC	1918	space	make	them	intuitively	appealing	for	most	enterprise
network	architects	and	engineers	new	to	IPv6.	Using	RFC	1918	addresses	along	with	NAT	in	IPv4	at	the	enterprise
network	edge	is	the	de	facto	standard	for	most	enterprises	(and	has	been	for	well	over	a	decade).	As	a	result,	it’s
generally	very	well	understood	by	network	operations	staff	and	well	supported	by	vendors.	Whatever	its	drawbacks
(and	there	are	keen	ones),	the	practice	of	supporting	IPv4	NAT	and	private	addressing	is	quite	mature.

Keep	in	mind,	however,	that	IPv6	was	designed	to	support	multiple	addresses	(and	address	types)	per	interface.	As	a
result,	some	organizations	may	wish	to	configure	both	ULA	and	GUA	on	the	same	host:	The	former	for	access	to
internal	resources	with	the	latter	for	Internet	access.

This	is	the	globally	routable	allocation	that	our	organization	will	be	assigned	a	block	from
by	an	RIR	or	an	ISP.	GUA	allocations	are	of	two	types:	provider	independent	(PI)	and
provider	assigned	(PA).[40]	PI	allocations	are	portable,	meaning	they	can	be	announced
and	routed	via	any	ISP.	They	are	assigned	by	the	RIR	directly	to	an	organization.	PA
allocations	are	assigned	by	the	ISP	and	must	be	returned	if	switching	to	a	new	ISP,	which
requires	network	renumbering.	PI	and	PA	allocations	are	covered	in	more	detail	in
Chapter	6.



Multicast	Addresses
In	contrast,	a	multicast	address	is	assigned	to	and	identifies	a	group	of	interfaces.[41]

Multicast	addresses
ff00::/8

The	multicast	address	range	begins	with	all	ones	in	the	first	eight	high-order	bits.	(The
next	four	bits	set	various	flags	used	to	help	characterize	the	address.)

The	four	bits	that	follow	create	various	multicast	scopes,	i.e.,	the	scope	of	the	network	the
addressed	packet	is	destined	for.	Multicast	scopes	are	shown	in	Table	2-2.[42]

Table	2-2.	Multicast	scopes

Scope Name

f Reserved

0 Reserved

1 Interface-local	scope

2 Link-local	scope

3 Realm-local	scope

4 Admin-local	scope

5 Site-local	scope

6-7 Unassigned

8 Organization-local	scope

9-d Unassigned

e Global	scope

For	operational	purposes,	the	multicast	addresses	(and	scopes)	we’re	likely	to	interact	with
most	frequently	are	displayed	in	Table	2-3.



Table	2-3.	Common	multicast	addresses

Address Scope/Destination

ff05::2 Site-local,	all	routers

ff01::1 Interface-local,	all	nodes

ff02::1 Link-local,	all	nodes

ff01::2 Interface-local,	all	routers

ff02::2 Link-local,	all	routers

With	the	first	16	bits	of	the	multicast	address	spoken	for,	112	bits	remain	for	multicast
group	IDs	(that’s	5.2x1033	available	groups	per	multicast	prefix!).

Anycast	Addresses
An	anycast	address	is	also	assigned	to	multiple,	different	interfaces,	but	packets	are
delivered	to	the	interface	closest	to	the	sender,	as	determined	by	routing	metrics.	Thus,	an
anycast	address	can	actually	be	any	unicast	address.

Both	IPv6	and	IPv4	anycast	addresses	are	used	by	large	network	operators	in	their	WAN
(or	even	global)	DNS	designs.	Name	servers	maintained	by	these	operators	are	configured
with	anycast	addresses,	and	end-user	DNS	queries	are	then	routed	to	the	closest	name
server.	This	generally	succeeds	in	improving	overall	session	performance.[43]

Finally,	not	technically	included	in	any	of	the	above	three	types	is	the	unspecified	address.

The	Unspecified	Address
Unspecified	address

::/128

This	is	an	all	0s	address.	It	signifies	that	the	node	doesn’t	yet	have	an	address	and,	as	such,
is	used	as	the	source	address	in	any	IPv6	packets	sent	by	a	node	before	it	has	learned	its
own	address.

Figure	2-1	compares	the	different	IPv6	address	types.



Figure	2-1.	IPv6	address	ranges



IPV4-MAPPED	ADDRESSES	IN	IPV6

In	the	early	days	of	IPv6,	a	fair	amount	of	effort	was	expended	in	finding	ways	to	translate	IPv4	addresses	into	IPv6
ones.	Some	of	these	methods	were	merely	representational,	while	others	were	coded	into	actual	transition
mechanisms.	In	general,	such	methods	have	either	not	been	widely	adopted	or	have	fallen	out	of	favor,	as	they	most
often	end	up	being	more	operationally	taxing	and	much	less	manageable	than	a	green-field	dual-stack	deployment.

Still,	it’s	important	to	be	aware	of	the	methods	that	exist	for	representing	or	translating	IPv4	into	IPv6.	We	often	end
up	responsible	for	networks	we	didn’t	design	or	build.	Such	networks	may	include	one	or	more	of	these	approaches,
and	we	may	need	to	manage	them	and	develop	a	plan	for	their	eventual	replacement.

There	are	two	IPv6	address	types	that	have	embedded	IPv4	addresses.	Either	may	be	in	use	in	an	existing	IPv6
network	and	may	show	up	in	an	existing	address	plan	(or	IPAM	system):

IPv4-compatible	addresses
IPv4-mapped	addresses

IPv4-compatible	addresses

An	IPv4-compatible	address	looks	like	this:
0:0:0:0:0:0:192.0.2.234

Because	of	the	six	repeated,	leading	0	hextets,	sometimes	these	addresses	will	be	represented	in	this	potentially
confusing	format:

::192.0.2.234

All	of	these	addresses	are	to	be	found	in	the	range	::/96

In	any	case,	as	we	can	observe,	the	left-most	96	high-order	bits	are	set	to	0	with	following	32	low-order	bits	set	to	the
IPv4	address.[44]

The	original	idea	with	these	addresses	was	to	create	a	dynamic	transition	mechanism	where	IPv6	packets	would	be
tunneled	over	IPv4	networks.	But	IPv4-compatible	addresses	have	been	deprecated,	which	is	the	IETF’s	rather
fanciful	way	of	saying	they’re	no	longer	to	be	supported	by	vendors	or	deployed	in	the	wild.	If	they’re	in	use	in	a
network	you	administer,	be	aware	that	they	won’t	be	supported	in	any	new	hardware	or	software.	You’ll	most	likely
want	to	decommission	them	as	soon	as	reasonably	possible.

IPv4-mapped	addresses

An	IPv4-mapped	address	looks	like	this:
0:0:0:0:0:ffff:192.0.2.234	(or,	::ffff:192.0.2.234)

These	addresses	are	assigned	from	the	range	::ffff:/96

The	left-most	80	high-order	bits	in	an	IPv4-mapped	address	are	set	to	0,	while	the	next	16	bits	are	set	to	1	(ffff).	The
following	32	low-order	bits	are	set	to	the	IPv4	address.

While	not	formally	deprecated,	IPv4-mapped	addresses	are	not	commonly	used.
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Protocol	Improvements
Recall	that	there	were	two	primary	reasons	for	developing	IPv6.	First,	and	most	obvious,
was	the	need	to	overcome	address	scarcity,	given	the	limited	32-bit	address	space	of	IPv4.
The	second	reason	was	to	provide	more	consistent	hierarchy	and	thus	more	efficient
routing	on	the	Internet.	But	the	early	decision	to	forgo	backward	compatibility	with	IPv4
meant	that	the	designers	of	IPv6	also	had	leeway	to	make	some	additional	improvements
to	the	new	protocol.	These	improvements	include:

Simplified	packet	headers

IPv4’s	variable-length	header	has	been	replaced	in	IPv6	with	a	fixed	40-byte	header.	As
a	result,	IPv6	packets	are	processed	more	quickly	by	routers	and	switches.

Improved	header	option	and	extension	support

IP	options	have	been	relocated	to	appended	header	extensions,	greatly	increasing	the
flexibility,	manageable	length,	and	forwarding	efficiency	of	IPv6	packets.

Flow	labels

The	ability	to	label	packets	as	part	of	traffic	flows	that	get	special	QoS	processing	by
routers	and	switches	has	been	integrated	into	IPv6.

Support	for	encryption	and	authentication

Authentication	and	Encapsulating	Security	Payload	headers	have	been	included	as	part
of	the	general	protocol	specification.

Neighbor	Discovery

ARP	in	IPv4	has	been	replaced	with	Neighbor	Discovery	in	IPv6,	which	leverages
Internet	Control	Message	Protocol	version	6	(ICMPv6)	to	provide	a	more	efficient
mechanism	(multicast	instead	of	broadcast)	for	mapping	layer	3	to	layer	2	addresses.

Other	changes	include	built-in	support	for	automatic	host	address	configuration	via
stateless	address	autoconfiguration	(SLAAC).[45]

As	uptake	of	IPv6	has	increased	in	production	enterprise	environments,	and	on	the
Internet,	some	of	these	changes	have	proven	durable,	while	others	appear	to	have	an
uncertain	future.	For	instance,	the	fixed	40-byte	header	length	in	IPv6	(as	compared	to	the
variable-length	header	in	IPv4)	has	greatly	improved	forwarding	efficiency.

Meanwhile,	flow	labeling,	while	promising,	has	yet	to	be	widely	deployed	and	is	mostly
unused.	Similarly,	rarely	used	features	like	Mobile	IP	(which	permit	devices	to	maintain
permanent	IP	addresses	even	while	moving	among	different	networks)	have	much	better
support	in	IPv6.	Finally,	protocol	attacks	on	extension	headers	have	led	to	proposals	that
some	of	them	be	deprecated.

Though	it’s	definitely	recommended	that	you	explore	these	improved	features	thoroughly
as	part	of	your	overall	IPv6	training,	we’ll	go	ahead	and	leave	the	gory	details	to	other
texts	(except	where	they	may	directly	impact	IPv6	address	planning).



Subnetting	Host	Bits
We	mentioned	earlier	that	there	are	situations	where	it’s	appropriate	to	subnet	the	64	bits
of	the	host	portion	of	the	IPv6	address.	Typically,	there	are	two	such	cases:

1.	 Loopback	addresses
2.	 Point-to-point	link	subnets

Let’s	take	a	look	at	each	of	these.

Loopback	Addresses
Just	as	in	IPv4,	in	IPv6	the	loopback	address	is	not	only	used	to	permit	a	host	to
communicate	with	itself,	it’s	also	uniquely	suitable	as	a	way	to	address	and	identify
network	devices	for	various	purposes.	These	include:

Device	access	and	management
Interior	gateway	protocol	(IGP)	router	ID

Loopback	addresses	can	be	configured	from	prefixes	outside	of	the	ones	reserved	for
production	addressing	and	interfaces.	This	makes	it	easier	to	create	a	security	policy	that
isolates	and	better	protects	the	internal	management	network.

Both	interior	and	exterior	gateway	protocols	(IGP	and	EGP)	for	routing	rely	on	loopback
addressing	for	sending	and	receiving	routing	updates,	which	are	then	used	to	calculate
routing	paths	and	provide	network	convergence.[46]

In	IPv4,	a	prefix	appropriately	sized	for	the	given	routing	domain	(often	a	/24)	may	be
reserved	and	individual	/32	loopback	addresses	allocated	from	it	may	be	assigned	to
routers.	If	more	than	one	routing	domain	is	part	of	the	topology,	an	additional	prefix	for
each	is	set	aside	from	which	to	assign	loopback	addresses	for	that	domain.[47]

In	IPv6,	the	same	concept	applies,	but	rather	than	worrying	about	appropriately	sizing	the
prefix,	we	simply	allocate	a	/64	per	routing	domain	and	assign	our	/128	loopback
addresses	from	it.

Point-to-Point	Link	Subnets
One	of	the	seemingly	endless	religious	debates	in	the	IPv6	community	is	what	size	subnet
to	configure	on	a	point-to-point	link.

The	original	recommendation	was	simply	to	use	a	/64.	As	we	discussed	in	our	opening
chapter,	it	makes	little	difference	whether	we	use	10	or	a	billion	of	the	addresses	available
to	us	with	a	64-bit	subnet.	But	nothing	quite	riles	the	anxiety	inherent	in	IPv4	thinking	like
the	idea	of	using	only	two	addresses	of	the	roughly	1.8x1019	available	to	us	in	a	/64!

As	it	happens,	there	have	been	other,	more	legitimate,	reasons	for	not	using	a	/64	on	a
point-to-point	link.	At	least	two	potential	security	vulnerabilities	were	identified	in	early
IPv6	production	environments:	Neighbor	Discovery	cache	exhaustion	and	the
misleadingly	fun-sounding	ping-pong	attack.	Both	of	these	vulnerabilities	could	result	in	a
disabled	point-to-point	link	(or	evan	a	disabled	router).

As	a	result	of	these	vulnerabilities,	an	RFC	was	issued	recommending	the	use	of	a	/127



subnet	(providing	two	addresses	on	a	point-to-point	link).[48]	Alternately,	some	engineers
chose	a	/126,	perhaps	out	of	misdirected	nostalgia	for	the	four	addresses	available	in	a	4-
bit	/30	subnet	in	IPv4.	In	another	possible	fit	of	nostalgia,	/127s	or	/126s	configured	for
point-to-point	links	could	be	taken	from	a	single,	parent	/64	(just	as	/30s	were	often
assigned	from	a	/24).

Meanwhile,	the	major	router	vendors	have	largely	eliminated	(or	created	workaround
configurations	for)	these	vulnerabilities	and	made	configuring	a	/127	optional.[49]	The
result	of	all	of	this	is	that	you’re	likely	to	encounter	one	or	more	of	these	subnet	sizes	in
different	production	networks.

The	current	recommendation	is	that	you	verify	that	your	router	vendor	has	eliminated	the
ND	cache	exhaustion	and	ping-pong	attack	vulnerabilities,	and	then	use	a	/64	per	point-to-
point	link.	If	they	haven’t	and	you	must	configure	a	/127,	set	aside	an	entire	/64	per	point-
to-point	link.	Assigning	a	/64	per	link	(regardless	of	the	actual	interface	configuration)
helps	keep	your	addressing	plan	consistent.



Host	Address	Assignment
Three	primary	methods	for	host	address	assignment	exist	in	IPv6.	Two	of	these	methods
(static	addressing	and	DHCP)	should	be	familiar	from	IPv4,	while	one,	SLAAC,	is	unique
to	IPv6.

As	with	IPv4,	static	addressing	is	typically	utilized	for	servers,	routers,	switches,	firewalls,
and	network	management	interfaces	for	any	appliances	(or	any	instance	where	address
assignments	are	unlikely	to	change	over	time).

SLAAC	is	available	on	router	interfaces	that	support	IPv6	and	will	allow	hosts	on	such	a
segment	to	self-assign	a	unique	address.	(Default	router	information	is	provided	via
ICMPv6	Router	Advertisements.)	Because	SLAAC	does	not	provide	any	authentication
mechanism	and	allows	a	host	to	connect	to	the	network	and	communicate	with	other
nodes,	this	addressing	method	is	not	recommended	where	security	is	required	or	preferred.
Lab	environments	or	totally	isolated	networks	where	tight	host	control	isn’t	a	requirement
are	good	candidates	for	the	exclusive	use	of	SLAAC.

Another	issue	with	the	use	of	SLAAC	may	arise	where	privacy	extensions	are	enabled	on
the	host.[50]	Privacy	extensions	allow	the	interface	ID	portion	of	a	SLAAC-assigned
address	to	be	randomized	in	an	effort	to	increase	privacy	for	traffic	originating	from	the
host.	(Otherwise,	the	SLAAC-assigned	host	address	will	always	contain	the	traceable
hardware	address	of	the	host’s	network	interface.)	Privacy	extensions	are	enabled	by
default	in	the	major	host	operating	systems	and	may	need	to	be	disabled	on	the	host	if
strict	tracking	and	control	of	hosts	is	desired.

By	contrast,	Stateful	DHCPv6	provides	dynamic	host	address	assignment,	but	also
includes	the	ability	to	pass	additional	options	to	the	client.	These	options	include
information	such	as	DNS	recursive	name	servers	and	the	default	domain	name.

Stateless	DHCPv6	is	yet	another	configuration	option.	With	Stateless	DHCPv6,	SLAAC	is
used	to	provide	host	address	assignment	and	default	router	information	while	DHCPv6
provides	a	list	of	DNS	recursive	name	servers	or	the	default	domain	name.[51]

Host	address	assignment	is	covered	in	more	detail	in	Chapter	8.



The	Problem	with	NAT
As	we	discussed,	NAT	is	a	technology	that	we’re	all	intimately	familiar	with.	It’s	so	much
a	part	of	everyday	life	in	IPv4	network	design,	deployment,	and	operations	that	it’s	likely
we	often	forget	about	or	understate	the	problems	it	introduces.	Let’s	review	at	least	three
of	them.

NAT	breaks	the	end-to-end	model	of	the	Internet

The	Internet	was	originally	conceived	with	an	end-to-end	model	of	host	communication:
any	host	on	the	Internet	would	be	able	to	communicate	directly	with	any	other	host.	Of
course,	this	model	depends	on	unique	host	addresses.

As	discussed,	early	Internet	engineers	faced	a	dilemma	of	scale.	The	simple	aggregation
and	routing	efficiency	afforded	by	Class	A	and	Class	B	network	allocations	came	at	the
cost	of	many	organizations	having	unused	host	addresses	that	couldn’t	easily	be	reclaimed
or	reallocated.

So	in	addition	to	CIDR	and	VLSM	methods	to	“right-size”	allocations	and	help	overcome
this	host	address	scarcity	problem,	it	was	also	recognized	that	stub	or	leaf	networks	didn’t
necessarily	need	unique	routable,	or	public,	addresses.	This	was	especially	true	of	newly
emerging	enterprise	networks	being	connected	for	commercial	or	business	purposes.	In	the
early	days	of	the	Internet,	they	simply	wanted	to	be	connected	for	a	basic	web	presence,
the	use	of	the	web	as	a	tool	for	productivity	and	research,	email,	and	perhaps	for
employees	and	customers	to	access	company	resources	remotely.	NAT	provided	a	simple
method	to	connect	private	addresses	to	the	Internet.	But	the	trade-off	was	that	any	hosts
outside	the	enterprise	network	could	no	longer	communicate	directly	with	the	hosts	on	the
inside.

These	early	business	adopters	of	the	Internet	didn’t	necessarily	realize	how	the	lack	of
end-to-end	connectivity	might	limit	application	development,	performance,	and	real
security.	Instead,	many	seized	on	the	idea	that	having	their	network	address	topology
obscured	to	the	outside	world	provided	an	additional,	“free”	layer	of	security.

NAT	reinforces	the	misperception	of	“security	through	obscurity”

Network	security	experts	have	long	warned	that	this	side-effect	of	NAT	doesn’t	provide
any	true	security.	If	anything,	it	reinforces	an	emphasis	on	the	perimeter	model	of	security
that	in	an	age	of	booming	malware	threats	and	infected	clients	has	long	been	insufficient.

Since	firewalls	often	provide	NAT	functionality,	it’s	also	common	to	conflate	NAT	with
stateful	packet	inspection,	as	if	the	two	were	one	and	the	same.	If	internal	enterprise
network	deployments	use	GUA	prefixes	and	needn’t	rely	on	NAT,	it	can	be	somewhat
easy	to	erroneously	overlook	the	fact	that	stateful	packet	inspection	is	still	in	place	(or
certainly	should	be)	at	the	edge	of	the	network.

Shedding	the	belief	that	NAT	is	providing	security	(along	with	reestablishing	the	fact	that
NAT	and	SPI	are	not	the	same	thing)	can	help	properly	deemphasize	a	perimeter	model
that	is	too-often	insufficiently	secure.	This	can	result	in	an	improved	network	security
posture	for	many	organziations.

NAT	is	operationally	taxing



There’s	no	polite	way	to	put	it:	NAT	breaks	applications.	It	makes	sense	if	you	think	about
it.	If	you	were	designing	a	network	application,	would	you	want	to	start	from	the	premise
that	one	or	more	intermediate	points	in	the	network	path	would	be	changing	the	IP	address
of	the	destination	host?

As	a	result,	firewall	and	security	appliance	vendors	have	gotten	pretty	good	over	the	years
at	fixing	what	NAT	breaks.	But	these	included	fix-ups,	or	NAT	helpers,	then	become
largely	invisible	to	network	administrators.

Meanwhile,	the	application	whose	session	flows	are	being	NATed	(and	fixed-up)	can
behave	erratically	or	suffer	from	performance	issues	that,	while	perhaps	not	breaking	the
application	outright,	can	degrade	user	experience	and	cause	headaches	for	IT	staff.

CARRIER-GRADE	NAT:	NAT	FOR	ISPS

The	economics	of	IPv4	exhaustion	have	created	a	major	headache	for	service	provider	networks.	While	ISPs	offering
core	routing	infrastructure	have	arguably	had	an	easier	time	deploying	IPv6,	broadband	and	mobile	providers	have	a
different	challenge:	namely,	how	to	continue	to	add	the	users	their	business	model	depends	on	in	an	era	of	dwindling
address	resources.

One	proposed	and	deployed	solution	is	carrier-grade	NAT	(CGN,	also	referred	to	as	large-scale	NAT,	or	LSN).	With
CGN,	new	mobile	and	broadband	subscribers	are	still	connected	via	their	cable	or	DSL	modems	using	RFC	1918
IPv4	networks.	But	because	the	CGN	architecture	also	uses	private	addressing	for	the	provider’s	access	layer,	this
results	in	two	internal	layers	of	NAT	before	any	translation	to	a	public	address	occurs	(aka,	NAT444;	see	Figure	2-2).
Compare	this	scenario	to	the	relatively	simple,	“traditional”	NAT	configuration	of	one	device	(or	one	home	network)
mapped	to	one	public	address.	Instead,	CGN	sessions	from	thousands	of	customer	devices	(or	networks)	with	private
addresses	are	NATed	to	private	addresses	in	the	provider’s	access	network,	and	then	NATed	again	to	a	single	public
address.	Such	a	configuration	makes	it	much	more	likely	that	one	or	more	of	the	problems	detailed	below	will	occur.

Figure	2-2.	CGN	(with	NAT444)	example

Figure	2-2	demonstrates	the	packet	flow	for	a	CGN	architecture	using	NAT444.

The	steps	are	as	follows:

1.	 Host	sends	packet	with	private	source	address	(SA).
2.	 Home	Gateway	(HGW)	changes	source	address	of	packet.
3.	 Carrier-Grade	NAT	(CGN)	maps	private	to	public	address.
4.	 CGN	changes	destination	address	(DA)	and	sends	to	HGW.
5.	 HGW	changes	destination	address	and	sends	to	host.

The	basic	CGN/LSN	cost-benefit	analysis	for	service	providers	probes	whether	or	not	purchasing	additional
CGN/LSN	hardware	(or	enhancing	existing	hardware	with	CGN/LSN	functionality)	and	developing	an	operational



practice	to	support	CGN/LSN	will	be	cheaper	than	either	immediate	or	eventual	IPv6	adoption.

It’s	also	not	simply	a	question	of	cost.	Subscriber	networks	are	adding	hundreds	to	thousands	of	new	users	every	day.
To	protect	revenue,	bringing	these	users	online	has	to	be	done	as	quickly	and	economically	as	possible.	The
engineering	practice	to	support	such	massive	provisioning	obviously	has	to	be	familiar	enough	to	be	rapidly	scalable.

But	you	probably	won’t	be	surprised	to	learn	that,	like	traditional	NAT	at	the	enterprise	edge,	CGN/LSN	deployments
introduce	problems	of	their	own.	These	issues	include:

Broken	geolocation
Difficulty	with	lawful	intercept
TCP	port-exhaustion

Broken	geolocation	and	reputation	services

The	maturity	of	IPv4	means	that	the	IPv4	Internet	becomes	more	like	a	village	(and	less	like	a	jungle)	with	every
passing	year.	Well-established	policies	and	methods	exist	to	track	where,	and	to	whom,	IPv4	blocks	are	allocated.
Network	operators	use	this	geolocation	information	to	measure	latency	and	help	optimize	traffic	delivery.	(Content
providers	and	license-holders	use	the	information	to	make	sure	that	content	isn’t	delivered	to	network	locations	where
licensing	agreeements	haven’t	been	secured.)

IPv4	reputation	services	have	sprung	up	to	provide	the	dirt	on	which	networks	are	sourcing	malware,	spam,	and
hacker	attacks.	This	information	allows	network	administrators	to	block	connections	originating	from	IP	addresses	or
ranges	known	to	harbor	malicious	users.

Because	CGN/LSN	hides	up	to	many	thousands	of	private	addresses	behind	one	or	a	few	public	addresses,	it	can
break	both	geolocation	and	reputation	services.

Lawful	intercept

Law	enforcement	agencies	may	need	to	issue	requests	to	ISPs	for	information	regarding	Internet	users’	activities
when	those	users	are	suspected	of	breaking	laws.	Since	CGN/LSN	hides	user	addresses,	ISPs	deploying	it	have	the
burden	of	tracking	transaction	data	to	the	port	level	for	thousands	upon	thousands	of	NATed	sessions.	The	amount	of
data	generated	is	voluminous	yet	must	be	stored	for	some	period	of	time	to	make	available	to	law	enforcement	upon
request,	creating	additional	expense	and	administrative	burden	for	the	ISP.[52]

TCP	port	exhaustion

Many	modern	Internet-based	applications	use	multiple	TCP	ports	per	session.	A	well-known	example	of	this	is
Google	Maps,	where	every	requested	map	is	subdivided	into	sections	and	each	map	section	requires	a	new	TCP	port
to	be	opened.

CGN/LSN	appliances	only	have	so	much	memory	to	track	these	ports	and	must	share	that	memory	among	individual
addresses	being	NATed.	Any	given	host	behind	a	CGN/LSN	will	thus	have	a	limited	number	of	TCP	ports	available
to	them	for	any	particular	session.	Once	these	ports	are	all	in	use,	requests	to	open	new	ones	must	be	dropped,	which
can	result	in	broken	applications	and	degraded	user	experience	(something	the	content	provider,	and	not	the	service
provider	deploying	CGN	in	the	first	place,	may	get	unfairly	blamed	for).



Practical	Example:	Production	Loopback	Addresses
Managing	a	bunch	of	routers	is	much	easier	if	each	router	is	assigned	a	loopback	address
from	a	single	prefix.	In	IPv4,	these	addresses	are	usually	/32s	assigned	from	one	/24	(or
larger	prefix),	while	in	IPv6,	they	are	/128s	assigned	from	one	/64	(as	covered	in	the
section	on	loopback	addresses	earlier	in	this	chapter).

A	logical	numbering	scheme	can	help	make	it	easier	for	operational	staff	and	processes	to
track	and	manage	routers.	In	networks	with	fewer	routers,	simple	is	perhaps	best.	For
example,	if	the	prefix	we’ve	chosen	to	use	is	2001:db8:aa:90::/64,	we	could	use	::1	as	the
first	address	(say	for	the	HQ	router)	and	then	number	up	sequentially	from	there.

Sequential	addresses	are,	of	course,	easier	for	hackers	to	scan,	but	we’ll	likely	have	a
security	policy	and	set	of	ACLs	in	place	that	isolates	our	loopback	network	(while	still
permitting	legitimate	device	access).

But	as	we’ll	repeatedly	demonstrate	throughout	the	book,	the	abundance	of	bits	available
in	IPv6	provides	the	opportunity	to	encode	operational	significance	into	any	given	address
or	prefix.

In	this	case,	we	have	64	bits	to	play	with,	which	gives	us	16	hexadecimal	characters	to	use
for	device	identification.[53]

With	4	bits	per	character	in	the	address,	we	could	create	groups	and	subgroups	that	are
multiples	of	 	(e.g.,	16,	256,	4096,	or	65536,	etc).	Note	that	any	hierarchy	we	create	will
only	be	“on	paper”	and	will	not	be	reflected	in	the	actual	routing	configuration	as	we’re
still	just	using	an	entire	/64	per	routing	domain.

Routing	domains	will	often	be	defined	and	configured	according	to	geographical	regions.
This	helps	segment	routing	policy	in	a	way	that	can	make	it	easier	to	manage	network
traffic.	Returning	to	our	example,	let’s	say	we	have	a	routing	domain	corresponding	to	our
North	American	region.	We	allocate	2001:db8:aa:90::/64	to	use	for	router	and	device
loopback	addressing	in	this	region.

We	can	then	examine	our	logical	network	topology	to	look	for	opportunities	to	reflect	that
topology	in	the	loopback	addressing.

Let’s	say	our	North	American	region	is	divided	into	three	subregions:	West,	Central,	and
East.	Each	region	has	several	core	routers	interconnecting	the	enterprise	networks	of
various	offices,	including	the	company’s	headquarters.	There	are	30	routers	in	total.	(The
routers	and	switches	at	each	of	these	locations	are	managed	locally.)	The	routers	are
running	OSPFv3	as	the	IPv6	IGP.

As	mentioned,	we	could	certainly	just	number	from	our	/64	sequentially	starting	at	::1	and
number	through	::1e.	Chances	are	our	existing	IPv4	loopback	scheme	does	something
similar.	By	keeping	the	values	the	same,	we	help	retain	some	operational	continuity	with
our	IPv4	network.

CAUTION

If	you’re	planning	on	using	whatever	numbering	scheme	you’re	using	in	IPv4,	remember	that	hexadecimal	doesn’t
map	directly	to	decimal.	In	general,	we’ll	want	to	avoid	IPv6	addressing	schemes	that	restrict	us	to	our	existing	IPv4
one.	We’ll	discuss	the	reasons	why	in	more	detail	in	Chapter	5.



But	by	doing	that	we’d	be	missing	the	opportunity	to	encode	the	geography	associated
with	our	topology	in	our	loopback	addressing	scheme.	(This	capability	becomes	especially
valuable	if	we	have	lots	of	routers	in	our	core	network.)

To	illustrate,	let’s	break	our	/64	prefix	into	address	groups.	First,	we’ll	look	at	the	range	of
address	values	possible	for	the	prefix:

2001:db8:aa:90:0000:0000:0000:0000	-	2001:db8:aa:90:ffff:ffff:ffff:ffff

Next,	to	keep	the	addresses	tidy,	let’s	just	focus	on	the	last	group:
2001:db8:aa:90::[XXXX]/64

Since	we	already	have	more	than	16	routers	in	one	region,	we’ll	need	more	than	4	bits	per
region.	We’d	likely	want	to	use	more	than	4	bits	anyway	to	leave	room	for	the	“growth”	of
our	loopback	ID	scheme.[54]

By	dividing	the	last	group	into	8	bits	each,	that	gives	us	256	levels	of	256	addresses.
2001:db8:aa:90::[RR][DD]

(Where	R	represents	the	region	and	D	represents	the	device.)

Which	gives	us:
2001:db8:aa:90::[00-ff][00-ff]/64

The	simplest	addressing	scheme	would	only	require	three	levels,	one	for	each	of	our
regions,	and	at	least	as	many	addresses	as	we	had	regional	network	devices.	In	our
example,	we	have	30	total,	with,	say,	10	routers	per	region,	so	the	previous	address	would
provide	more	than	enough	room	for	expansion	(all	the	way	up	to	256	regions	with	256
devices	per	region).

Now	we’ll	show	some	actual	address-to-device	mappings	in	Table	2-4:

Table	2-4.	Address	to	device	mappings

Looback	address Region Description

2001:db8:aa:90::101/64 Central	region Chicago	HQ	core	router

2001:db8:aa:90::102/64 Central	region Chicago	HQ	core	router	2

2001:db8:aa:90::103/64 Central	region Minneapolis	core	router

2001:db8:aa:90::201/64 Western	region San	Jose	core	router

2001:db8:aa:90::301/64 Eastern	region Boston	core	router

TIP

We	certainly	could	have	added	one	or	two	bits	to	increase	our	available	addresses	in	that	group	of	addresses	by	32	or
64	respectively.	But	recall	that	we	want	to	stick	to	using	groups	of	addresses	that	are	always	multiples	of	24n	so	that
each	character	in	any	given	address	is	significant	for	the	purposes	of	mapping	that	address	to	a	particular	location.

You	might	legitimately	ask:	Isn’t	this	overkill?	Don’t	I	have	DNS	to	handle	the	naming	of
devices?	Chances	are	the	great	majority	of	your	network	management	will	rely	on	DNS
entries	for	routers	and	other	devices	on	the	network.	First-level	operational	staff	with



minimal	training	certainly	will.	Senior	engineers	responsible	for	building	and	maintaining
the	routing	configuration	will	rely	on	scripts	or	network	management	automation	tools
that	use	DNS	names	for	devices.

But	there	are	plenty	of	instances	where	DNS	resolution	might	fail.	Device	identification
via	the	IPv6	address	protects	an	additional	layer	of	operational	transparency	and	thus
effectiveness.	The	trade-off	between	this	benefit	and	whatever	additional	complexity	it
entails	is	a	specific	instance	of	the	general	challenge	of	balancing	the	complexity	of	any
operational	practice	with	its	general	accessibility	and	extensibility;	i.e.,	if	an	operational
practice	is	so	complex	that	only	a	few	engineers	can	learn	it	and	use	it,	its	benefit	to	the
organization	may	be	constricted	to	only	those	individuals.
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IPV6	AS	THE	GEOLOGIC	AGE	OF	THE	EARTH

Here’s	another	size	comparison	between	the	IPv6	and	IPv4	address	spaces.	According	to	geologists,	the	Earth	is
approximately	4.54	billion	years	old.

The	first	humans	(the	species	Homo	habilis)	appeared	on	the	scene	over	2	million	years	ago.	In	the	figure	that
follows,	that	slice	of	time	is	just	before	the	very	top	of	the	circle.

Just	to	get	some	sense	of	how	much	time	that	represents	in	the	context	of	the	age	of	the	Earth,	let’s	calculate	the
percentage	of	one	arc	degree	(1°)	that	2	million	years	represents:

So	humans	as	a	genus	have	been	around	for	nearly	16%	of	one	arc	degree	(where	360	arc	degrees	represent	the	4.54
billion	years	the	Earth	has	existed).	Modern	Homo	sapiens	are	a	bright-eyed	and	bushy-(non)tailed	50,000	years	old,
or	approximately	0.4%	of	one	arc	degree	in	our	circle.

For	our	comparison	proper,	let’s	make	that	4.54	billion	years	equivalent	to	the	total	number	of	IPv6	addresses.

So,	how	much	time	would	we	need	to	represent	all	IPv4	addresses?

When	I	ask	this	question	of	audiences	during	IPv6	presentations,	the	estimates	(by	both	IPv6	newbies	and	veterans)
are	typically	in	the	range	of	seconds	to	months.

To	find	the	actual	answer,	we	first	divide	the	number	of	IPv4	addresses	by	the	number	of	IPv6	addresses	to	determine
the	ratio	of	IPv4	to	IPv6:[55]

Next,	we’ll	multiply	that	ratio	by	4.54	billion	years	(but	first	let’s	reexpress	the	years	as	seconds):

Finally:

And	we	have	our	answer:	Approximately	2	trillionths	of	a	second	(or	roughly	how	long	it	would	take	light	to	traverse
the	period	at	the	end	of	this	sentence).



[28]	The	binary	representation	is	how	a	computer	stores	the	address	in	memory	and	how	it	appears	on	the	wire.

[29]	The	technically	precise	(and	fortunately	seldom-used)	term	is	hexadectet.

[30]	An	alternative	recommendation	suggests	that	you	should	compress	the	left-most	zeros	in	an	effort	to	keep	the
network	part	of	the	prefix	as	short	and	readable	as	possible.

[31]	After	all,	cabs	anger	faun	man…er,	anagrams	can	be	fun!

[32]	One	notable	exception	to	this	recommendation	might	include	production	DNS	name	server	addresses.	Such
addresses,	when	memorable,	can	make	any	configuration	or	troubleshooting	operations	easier	to	perform.

[33]	Perhaps	this	even	division	of	bits	suggests	the	equal	importance	of	global	routing	efficiency	and	sufficient	host
addressing.

[34]	RFC	4291,	IP	Version	6	Addressing	Architecture.	By	the	way,	are	you	wondering	from	the	table	above	where	the
broadcast	address	type	went?	If	you’re	old	enough	and	lucky	enough	to	remember	unintentional	broadcast	storms
bringing	all	LAN	traffic	to	a	screeching	halt,	you’ll	be	happy	to	learn	that	broadcast	addresses	don’t	exist	in	IPv6.
They’ve	been	replaced	entirely	with	multicast	addresses	and	the	much	more	efficient	routing	and	switching	logic	they
provide.

[35]	The	loopback	address	has	been	helpfully	described	in	the	standards	as	“a	Link-Local	unicast	address	of	a	virtual
interface	to	an	imaginary	link	that	goes	nowhere.”

[36]	The	only	instance	where	this	should	not	occur	is	if	a	duplicate	Link-Local	address	is	detected	on	the	same	segment.

[37]	While	technically	the	GUA	space	is	everything	left	once	we	take	out	the	other	address	ranges	and	addresses,	only
125	bits	(!)	of	that	remaining	address	space	has	been	allocated	for	immediate	use.

[38]	RFC	4193,	Unique	Local	IPv6	Unicast	Addresses.

[39]	The	algorithm	for	this	is	described	in	RFC	4941,	Privacy	Extensions	for	Stateless	Address	Autoconfiguration	in
IPv6.

[40]	PA	is	sometimes	also	referred	to	as	Provider	Aggregatable	space.

[41]	While	these	interfaces	are	usually	on	different	nodes,	there’s	no	rule	that	says	they	have	to	be.

[42]	RFC	7346,	IPv6	Multicast	Address	Scopes.

[43]	For	example,	Google’s	public	DNS	service	uses	the	IPv6	anycast	addresses	2001:4860:4860::8888	and
2001:4860:4860::8844	for	its	name	servers.

[44]	For	the	example,	I’ve	used	an	IPv4	address	from	the	reserved	documentation	range,	but	in	practice	this	address
must	be	a	globally	unique	IPv4	unicast	address.

[45]	Keep	in	mind	that	you’d	still	need	a	DHCPv6	server	when	using	SLAAC	to	provide	any	DNS	server	and	domain
info	to	the	host.	See	DHCPv6	Basics	for	more	information.

[46]	IGP	and	EGP	routing	protocols	are	covered	in	more	detail	in	Chapter	10.

[47]	A	routing	domain	can	be	loosely	defined	as	a	collection	of	routers	under	one	administration	and	running	the	same
routing	protocol	instance	(e.g.,	a	BGP	AS,	OSPF	process,	VRF,	etc.).	These	loopback	addresses	often	correspond	to	the
router	IDs	used	by	the	routing	protocol	as	part	of	its	route	calculation.

[48]	RFC	6164,	Using	127-Bit	IPv6	Prefixes	on	Inter-Router	Links.

[49]	For	example,	Cisco	recently	introduced	a	feature	called	Destination	Guard	that	explicitly	protects	an	interface	from
Neighbor	Discovery	cache	exhaustion	attacks.

[50]	RFC	4941,	Privacy	Extensions	for	Stateless	Address	Autoconfiguration	in	IPv6.

[51]	RFC	6106,	IPv6	Router	Advertisement	Options	for	DNS	Configuration,	proposes	including	DNS	server	and	search
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list	information	in	RAs	to	provide	host	configuration	options	for	SLAAC	currently	provided	by	DHCPv6,	but	it	isn’t
widely	implemented	among	host	operating	systems.

[52]	The	regulations	applying	to	lawful	intercept	requirements	vary	by	jurisdiction,	but	in	one	example,	ISPs	must	keep
these	data	for	at	least	six	months.	Also,	dynamic	port	assignment	and	changing	port	numbers	amplify	an	already
staggering	data	management	challenge.

[53]	Keep	in	mind	that	whatever	name	or	function	significance	we	encode	into	the	address	using	the	bits	and	resulting
characters	available	to	us	would	be	separate	from	whatever	DNS	entries	we	might	(or	might	not)	create	for	it.

[54]	It’s	not	that	we’ll	ever	run	out	of	IPv6	addresses	given	that	we	have	1.8x1019	at	our	disposal,	but	it	would	be	nice	to
keep	our	future	loopback	ID	assignments	contiguous	with	the	previous	per-region	ones.

[55]	Keep	this	ratio	of	IPv4	to	IPv6	handy	if	you	really	want	to	impress	strangers	at	parties	or	your	in-laws	at	the	next
holiday	gathering.





Chapter	3.	Planning	Your	IPv6
Deployment



Introduction
Creating	an	IPv6	address	plan	is	one	of	the	most	critical	requirements	for	effectively
adopting	IPv6.	But,	of	course,	it’s	not	the	only	one.	So	what	else	goes	into	a	successful
IPv6	deployment	effort?	Most	organizations	that	succeed	in	adopting	IPv6	take	advantage
of	a	relatively	small	number	of	reliable	strategies	and	practices.	In	the	following	chapter,
we’ll	explore	these	approaches	and	help	you	to	align	them	with	your	own	efforts.	We’ll
discuss:

The	IPv6	business	case	you	already	have
IPv6	as	a	cross-functional	initiative
A	phased	approach	to	IPv6	adoption



The	IPv6	Business	Case	You	Already	Have
If	you	ask	them,	IT	managers	and	executives	will	likely	insist	that	they	have	been	looking
high	and	low	—	from	the	very	beginning	of	time,	even	—	for	the	elusive	phantom	known
as	The	Business	Case	for	IPv6	Adoption.	This	Business	Case	demonstrates	the
overwhelming	and	undeniable	benefits	of	adopting	IPv6:	better	network	performance	and
security,	lowered	cost	for	IT	operations,	fresher	breath,	and	World	Peace™.	But	they
haven’t	found	it,	so	you	should	quit	asking	for	a	budget	or	additional	personnel	to	deploy
IPv6	(and	please	shut	the	door	on	your	way	out).

There	are	various	reasons	for	the	lack	of	an	incontrovertible	business	case	for	IPv6
adoption.	For	one	thing,	although	IT	environments	may	utilize	many	common	standards,
hardware,	software,	and	operational	practices,	it	would	still	be	difficult	to	prove	a
consistent	and	compelling	bottom-line	benefit	for	every	company	as	business	missions	and
organizational	approaches	are	varied	and	not	“one	size	fits	all.”

Part	of	the	challenge	is	that,	up	till	now,	the	overall	rate	of	IPv6	adoption	has	been	slow,
especially	among	enterprises,	and	especially	for	their	internal	networks	(i.e.,	corporate
LANs	and	data	centers).	With	fewer	IPv6	deployments,	the	data	that	might	reveal	cost-
savings	or	performance	or	operational	benefits	are	harder	to	come	by.	And	even	once	a
large	deployment	base	exists,	it	will	still	take	time	to	assess	the	ways	in	which	IPv6	is
benefitting	the	business.

But	that	doesn’t	mean	that	there	are	no	business	cases	at	all	for	enterprise	IPv6	adoption.
It’s	just	that	for	most	organizations,	the	most	compelling	business	case	is	based	on
managing	the	risks	and	costs	that	increase	over	time	in	the	absence	of	an	IPv6	adoption
initiative.

We’ve	already	mentioned	the	exhaustion	of	IPv4	in	North	America,	Asia,	Europe,	and
Latin	America.	Examining	Asia	in	particular,	most	companies	see	tremendous	potential	in
reaching	markets	in	China	and	India.	Internet	penetration	in	both	countries	is	low	when
compared	with	those	in	Europe	and	North	America,	but	it	is	increasing	rapidly.	The
ongoing	explosion	in	the	number	of	new	mobile	devices	connecting	to	the	Internet	in	these
countries	proves	that	mobile	networks	are	the	most	efficient	way	to	get	them	online.

Recent	data	and	predictions	confirm	that	this	is	a	global	trend:	according	to	Cisco,	2014
will	be	the	year	that	the	number	of	mobile-connected	devices	exceeds	the	human
population	of	the	earth	(with	10	billion	mobile	devices	by	2017).[56]

But	as	we’ve	mentioned,	in	every	global	region	(except	Africa),	IPv4	is	exhausted.
Meanwhile,	hundreds	of	millions	of	potential	users	that	remain	unconnected	are	being
aggressively	marketed	to	by	regional	mobile	providers.	These	providers	have	largely
recognized	the	unprecedented	operational	nightmare	they	will	face	in	attempting	to	use
IPv4	private	addressing	and	carrier-grade	NAT	(CGN)	to	scale	their	service	to	support
these	new	users.	Only	IPv6	provides	sufficient	addressing	that	is	also	operationally
scalable	and	manageable	for	the	indefinite	future.

This	means	that	most	new	mobile	users	have	devices	configured	with	IPv6	addresses.
These	developments	are	changing	the	definition	of	what	it	means	for	a	business	to	be
connected	to	the	Internet.	The	management	of	any	organization	is	unlikely	to	quibble	with



the	argument	that	Internet	presence	is	a	must-have	in	the	new	economy.	Yet,	out	of
necessity,	millions	of	new	subscribers	are	connecting	to	the	Internet	using	only	IPv6.	What
happens	when	they	attempt	to	access	an	organization’s	IPv4-only	website?

In	the	worst	case,	it’s	possible	that	they	won’t	be	able	to	access	that	organization’s	website
at	all.	Since	IPv4	and	IPv6	are	not	directly	interoperable,	the	session	packets	will	have	to
be	translated	at	least	twice	(both	to	and	from	the	web	server).	If	a	company	hasn’t	done
any	planning	for	IPv6	and	has	no	IPv6	web	presence,	this	mandatory	translation	of	the
user	sessions	from	IPv6	to	IPv4	will	be	entirely	outside	of	its	control.	Even	if	users	pass
through	one	or	more	IPv6-to-IPv4	translation	points	to	successfully	connect	to	the
website,	how	much	might	user	experience	be	degraded	given	that	each	translation
introduces	the	possibility	of	increased	session	latency?

Research	shows	that	users	seem	preternaturally	sensitive	to	delays	in	webpage	loading
times.	A	study	by	Google	proved	that	a	250-millisecond	delay	—	the	time	it	takes	to	blink
your	eye	—	was	enough	to	drive	users	to	competitors’	websites.



IPv6	Adoption	as	a	Cross-Functional	Initative
So	let’s	say	you’ve	gotten	executive	buy-in	for	IPv6	adoption	and	are	proceeding	with
management’s	approval.	Or	perhaps	you’ve	decided	that	you’re	not	going	to	wait	around
for	the	corner-office	types	to	pull	their	heads	out	of	their	ascots:	you’ve	launched	a	rear-
guard	action	to	deploy	IPv6!	Either	way,	IPv6	adoption	in	larger	organizations	can	be
painfully	slow.	But	cross-functional	initiatives	are	quite	often	susceptible	to	this	kind	of
inertia,	and	the	biggest	reasons	for	this	are	easier	to	mitigate	once	identified.

Let’s	examine	what	an	example	of	this	challenge	might	look	like	in	the	Real	World™.

Often,	the	IT	network	team	gets	the	ball	rolling	with	IPv6.	Imagine	then,	that	the	network
team	at	BellaLabs	Corporation	has	successfully	gotten	through	some	initial	testing	of	IPv6
deployed	on	lab	gear.	Now	they’d	like	to	try	turning	up	IPv6	on	a	server	in	the	DMZ	to
test	some	6to4	tunnel	connectivity	using	Hurricane	Electric’s	tunnelbroker	service.
(They’ve	already	got	a	DMZ	segment	enabled	and	configured	with	public	addressing	to
facilitate	this	type	of	testing.)	So	someone	from	the	network	team	opens	a	ticket	that	gets
forwarded	to	the	security	team:	please	open	IP	protocol	41	to	IP	address	192.0.2.35	to
allow	us	to	test	IPv6	6to4	tunneling.

And	they	wait.

And	wait.

Eventually,	Ned	from	the	network	team	follows	up	with	the	help	desk	and	finally	gets	a
call	back:

“Hi	Ned.	It’s	Susan	from	security.”

“Hi	Susan.	Thanks	for	getting	back	to	me.	Did	you	see	my	request?”

“I	did	Ned,	and	I	was	just	trying	to	configure	the	firewall	for	your	request,	but	I	don’t	see
anywhere	to	add	or	modify	IPv6	entries.”

“Well,	it’s	really	just	an	IPv4	rule	that	needs	to	be	modified.	We	just	need	to	get	IP
protocol	41	opened	to	the	public	IP	of	a	server	in	the	DMZ.”

“Oh.	OK.	Let	me	look	into	it	and	call	you	back.	What	port	and	IP	did	you	say?”

“IP	protocol	41	and	IP	192.0.2.35.”

“Got	it.	I’ll	call	you	back	in	a	bit.”

A	little	later,	Ned’s	desk	phone	rings	again.

“Ned,	this	is	Artesh	from	security.”

“Hi	Artesh.	Is	my	request	completed?”

“Sorry,	no.	I’m	just	trying	to	figure	out	if	our	security	policy	supports	this.	There’s	nothing
in	the	existing	policy	docs	about	IPv6.”

“Hmm.	Well,	it’s	IPv6	over	IPv4,	so	at	this	point	it’s	really	only	IPv4	on	the	firewall	that
we’d	be	modifying.”

“But	it’s	IPv6	on	the	server,	right?”



“Yeah.”

“OK.	Well,	let	me	check	with	my	manager.”

“OK.	Thanks.”

A	day	or	two	elapses,	and	Ned	calls	Artesh	back.

“Hi	Artesh,	it’s	Ned.	Did	you	get	a	response	on	our	configuration	request?”

“Yeah,	Ned.	I	was	just	about	to	call	you.	The	head	of	security	said	we	can’t	support	IPv6
at	this	time.	I	explained	that	it’s	really	IPv4	on	the	firewall,	but	he	said	since	IPv6	will	be
running	on	the	DMZ	server	he	can’t	approve	it.”

“He	realizes	that	servers	in	the	DMZ	are	using	clustering	that	relies	on	IPv6	already,
right?”

“Really?	I	didn’t	know	that.	I’ll	let	him	know,	but	for	now	we	can’t	accommodate	the
request.	Sorry.”

Two	obvious	issues	are	at	play	here.	The	first	is	that	security	hasn’t	had	any	IPv6	training
and	doesn’t	have	the	requisite	knowledge	to	handle	what	would	otherwise	be	a	simple
request	from	the	network	team.	The	second	is	that	the	company’s	security	policy	hasn’t
been	updated	to	include	IPv6.	(A	related	third	issue	is	that	lack	of	management	buy-in
may	have	made	the	first	two	issues	much	more	likely.)

As	a	result,	the	IPv6	adoption	effort	is	delayed.	As	with	any	cross-functional	initiative,	it’s
critical	that	any	business	unit	or	silo	in	the	organization	that	might	impact	(or	be	impacted
by)	the	effort	receive	at	least	minimal	notification	and	training.
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A	Phased	Approach	to	IPv6	Adoption
Many	organizations	have	successfully	deployed	IPv6	by	using	a	phased	approach.	Large
IT	projects	are	often	broken	into	phases	to	better	manage	the	associated	risks	and	costs.
Since	IP	addressing	touches	every	part	of	the	network,	any	changes	to	it	can	impact	an
organization’s	critical	services,	applications,	and	procedures.	Unplanned	network
downtime	is	the	bane	of	IT,	and	too	much	of	it	can	lead	to	loss	of	productivity,	lost
revenue,	negative	brand	impact,	and	employees	throwing	up	their	hands	and	heading	for
their	cars	at	2:30P.M.	on	a	Tuesday.	While	a	project	manager	with	OCD	could	easily	break
up	an	enterprise’s	IPv6	adoption	project	into	a	bazillion	phases,	most	organizations	find
that	three	phases	will	generally	suffice.

1.	 Preparation
2.	 External	adoption
3.	 Internal	adoption



Phase	1:	Preparation
For	most	enterprises,	the	first	phase	entails	the	least	associated	risk	and	cost	while	the	last
phase	represents	the	most.	(If	your	enterprise	is	different,	feel	free	to	shuffle	the	phases
according	to	the	principle	at	work,	i.e.,	the	phase	with	the	lowest	risk	and	cost	should
come	first	or	next).	The	preparation	phase	usually	consists	of	several	individual	steps,
many	of	which	can	be	accomplished	in	parallel.	They	include	but	are	not	limited	to:

Management	buy-in
IPv6	training
Creating	an	IPv6	task	force	and	selecting	IPv6	stakeholders
Verifying	that	your	ISP	supports	IPv6
Auditing	your	assets	for	IPv6	support
Working	with	your	vendors
Obtaining	an	IPv6	address	allocation

And	finally	the	most	exciting	task	of	all:

Creating	an	IPv6	address	plan

Let’s	examine	each	of	these	first	phase	tasks	individually.	(Creating	an	IPv6	Address	Plan
is	covered	explicitly	in	later	chapters.)

Management	Buy-in
Management	buy-in	is,	at	the	most	basic	level	and	for	the	purposes	of	our	discussion,
simply	approval	from	management	to	move	forward	with	some	degree	of	IPv6	adoption.
Ideally,	such	approval	will	lead	to	capital	and	operational	budget	allocations,	specifically
for	an	IPv6	deployment	effort.	Training,	additional	personnel	or	person-hours,	hardware
and	software	are	all	helpful	in	accelerating	the	completion	of	tasks	in	each	phase	of	the
initiative.

IT	managers	have	been	notoriously	ambivalent	about	IPv6	for	many	years.	And	who	can
blame	them?	On	the	one	hand,	industry	media	frenzies	about	the	imminent	demise	of	all
things	IPv4	and	the	need	to	deploy	IPv6	immediately	have	occurred	frequently	enough	in
the	past	few	years	to	create	a	sense	of	panic	fatigue	(especially	as	IPv4	continues	to	work
just	fine).	Yet	in	the	face	of	such	fear-mongering,	business	cases	touting	any	authentic	cost
savings	from	adopting	IPv6	have	been	virtually	nonexistent.	Small	wonder	then	that	most
IT	managers	are	continuing	their	“wait-and-see”	approach	to	IPv6.

Of	course,	this	can	complicate	management	buy-in	for	IPv6	deployment.	While	it’s	often
possible	(or	expected)	to	move	forward	with	early-stage	IPv6	adoption	tasks,	such	steps
are	often	taken	with	no	formal	project	definition,	additional	personnel	or	funding,	or
explicit	IT	manager	approval.	In	cases	where	it’s	simply	expected	that	IT	staff	will	absorb
the	additional	effort	around	IPv6	into	existing	operational	cycles	and	budget,	efforts
should	still	be	made	to	define	IPv6	adoption	as	a	unique	project,	one	that	requires
dedicated	planning	and	resources.

Keep	in	mind	that,	depending	on	the	size	of	the	organization,	a	minimal	level	of
management	buy-in	and	participation	may	be	necessary	to	allow	IT	and	any	other	IPv6
adoption	project	stakeholders	to	work	effectively	across	different	business	units,	or	silos,



within	the	enterprise.	Often,	such	buy-in	may	simply	be	an	unfunded	mandate	to	“go
figure	out	what	we	need	to	do	about	IPv6.”	But	even	without	any	additional	budget,
management	buy-in	can	help	an	IPv6	adoption	initiative	progress.

Remember	also	that	the	risks	and	costs	of	failing	to	adopt	IPv6	don’t	vanish	just	because
management	chooses	to	ignore	them.	It’s	still	possible	to	drive	effective	IPv6	deployment
without	management	buy-in.	Indeed,	you	or	your	team	may	be	held	accountable	for	failing
to	do	so	once	management	becomes	aware	that	a	lack	of	IPv6	adoption	has	compromised
the	company’s	business	agility,	business	continuity,	or	competitive	advantage.

We’ve	already	examined	how	an	enterprise	neglecting	to	make	its	website	available	over
IPv6	may	compromise	its	advantage	over	competitors	who	have	already	done	so.
(Remember	that	potentially	costly	250ms	delay	in	page	load	times?)	Business	continuity	is
potentially	threatened	by	failure	to	effectively	manage	and	secure	the	IPv6	that	is	already
enabled	on	your	network	today.	And	the	ongoing	evolution	of	business	agility	is	heavily
dependent	on	the	integration	of	cloud	solutions,	the	architectures	of	which	are	ever-more
reliant	on	IPv6	(due	to	its	unlimited	address	supply,	capacity	for	better	address
management	and	organization,	more	efficient	layer	3	to	layer	2	and	multiple	interface
addresses	management,	and	the	multiple	operational	efficiencies	that	result).[57]

Training
Any	unfamiliar	technology	has	the	potential	to	introduce	fear,	uncertainty,	and	doubt
(FUD)	into	IT	organizations.	Because	network	addressing	changes	can	impact	everything,
this	FUD	can	be	especially	keen	where	IPv6	is	concerned.	Formal	training	is	a	great	way
to	instill	confidence	in	IPv6.	Please	visit	www.ipv6.works	for	a	current	list	of	trainers.[58]

I	probably	don’t	have	to	convince	you	that	independent	study	can	go	a	long	way	toward
dispelling	IPv6	FUD.	(You’re	reading	this	book,	aren’t	you?)	Sources	of	information
include	other	books,	RFCs,	blogs,	and	white	papers.	Reading	recommendations	appear	at
the	end	of	some	chapters.	And	if	it’s	in	your	budget,	consider	attending	one	of	the	many
IPv6	conferences	that	are	held	around	the	world	each	year.	Rubbing	elbows	with	the	folks
who	have	adopted	IPv6	early	(and	who	have	the	operational	scars	to	prove	it)	will	boost
your	IPv6	knowledge	and	wisdom	and	instill	confidence	in	your	own	IPv6	deployment
effort.

Creating	an	IPv6	Task	Force
Larger	enterprises	may	have	multiple	IT	or	networking	groups	that	will	need	to	coordinate
IPv6	deployment,	especially	if	the	cost	and	risk	to	existing	operations	are	to	be	kept	to	a
minimum.	It’s	also	possible	that	other	business	units	outside	of	IT	could	be	impacted	by
IPv6	adoption	based	on	custom	network,	application,	or	service	requirements	that	are	not
well	understood	outside	that	silo	(or	even	within)	or	effectively	managed	by	IT.

As	we	discussed,	some	basic	training	on	IPv6	across	the	organization	should	help	identify
stakeholders	and	generate	interest	in	IPv6	deployment	project	participation,	but	such
training	is	unlikely	to	be	budgeted	in	most	organizations.	It’s	much	more	likely	that	ad-hoc
identification	of	IPv6	adoption	stakeholders	and	allies	in	relevant	business	units	will	be
necessary.

Ideally,	an	IPv6	task	force	would	be	created.	It	would	include	at	least	one	member	from
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every	business	unit	or	silo	in	the	organization.	Even	just	one	meeting	can	be	effective	at
establishing	both	basic	awareness	of	the	IPv6	adoption	initiative	and	its	backing	by	the
executive	team.	This,	in	turn,	can	create	accountability	and	an	expectation	of	success	that
may	help	overcome	what	would	otherwise	be	organizational	inertia	and	lack	of
participation.

Auditing	Hardware	and	Software	for	IPv6	Support
We	mentioned	that	even	though	IT	infrastructure	among	organizations	is	generally	more
similar	than	not,	the	ways	in	which	organizations	rely	on	the	network,	the	resources	they
have	at	their	disposal,	their	strategic	visions,	and	their	management	philosophies	can	all
vary	widely.	While	this	may	make	a	one-size-fits-all	project	plan	for	IPv6	adoption	less
likely,	there	are	tasks	common	to	every	deployment.

One	of	the	first	and	potentially	most	daunting	of	these	tasks	is	a	complete	inventory	and
audit	of	all	IT	assets	to	determine	the	degree	to	which	(if	any)	they	support	IPv6.	Any
hardware	or	software	that	currently	relies	on	the	IPv4	network	must	be	accounted	for	and
then	assessed	(see	Table	3-1	for	a	list).

Table	3-1.	What	to	audit	for	IPv6	support

Routers/Switches Remote-office	CPEs

Servers Operating	systems

Desktops Laptops

Critical	desktop	and	laptop	apps Collaboration	tools

Tablets/Smartphones Transparent	caching	appliances

Optical	gear NMS	software

IPv6	on	network	management	interfaces SNMP	support

TFTP/RADIUS/SSH/NTP Other	authentication	systems

IPS/IPS Route	server	software/appliances

Geolocation	database	subscriptions Kernel	modules	(e.g.,	TCP	acceleration)

Wireless	APs WLAN	controllers

TACACS/RADIUS	software/appliances Web	and	email	content	filters

NFS/CIFS Stateful	and	stateless	firewalls

Miscellaneous	networking	gear	ACLs CDP/FDP

VPN	software/appliances NATs



Security	tokens Middleware

Proxies,	network	and	application	level Load	balancers

Databases Web	server	software/plug-ins

Mail	transfer	agents Mail	servers

Calendar/productivity	servers Source	control/revision	control	systems

Accounting,	payroll,	financial	systems CRM	systems

Embedded	or	specialty	systems PBX	and	SIP/VOIP

Manufacturing	gear Specialized	systems	with	firmware-based	OS/software

Card	key	systems POS	terminals

Printers	and	multifunction	devices Sensors/Sensor	networks

Syslog/logging	services NetFlow/sFlow	export

It’s	certainly	a	long	list,	and	your	organization	may	have	additional	elements	not
mentioned	above.

A	common	lament	heard	when	describing	this	task	to	IT	personnel:	gee,	wouldn’t	it	be
swell	if	there	was	software	that	could	automatically	discover	all	your	IT	assets,	determine
their	level	of	IPv6	support,	and	generate	a	nifty	report/support	matrix?

Why,	yes,	that	would	be	swell.	But	that	would	really	only	be	half	—	pardon,	one-third	of
the	battle.	Those	who	are	far	along	in	their	IPv6	adoption	efforts	may	attest	to	the	fact	that
there	are	(at	least)	three	steps	to	fully	validating	whether	or	not	a	particular	IT	asset
effectively	supports	IPv6.	They	are:

1.	 Determining	vendor	support
2.	 Verifying	vendor	support	claims
3.	 Testing	support	under	load

Of	course,	before	you	can	tackle	the	first	step,	you’ll	need	to	have	successfully	completed
the	discovery	of	your	IT	assets.	Once	accounted	for,	this	hardware	and	software	will
generally	fall	into	one	of	three	categories:

1.	 Determining	vendor	support

a.	 IPv6:	All	systems	go!
b.	 Has	known	or	possible	upgrade	path	to	IPv6	support
c.	 Permanently	unsupported	(i.e.,	exiled	forever	from	the	New	Eden	of	128-bit

addressing)

We’ll	talk	about	what	to	do	with	assets	in	the	third	category	a	bit	later.	Meanwhile,
determining	which	of	the	first	two	categories	a	particular	asset	falls	into	will	most	likely
require,	at	the	least,	checking	with	product	documentation,	but	more	ideally,	verifying



directly	with	the	vendor	and	testing	in	a	lab	setting.

INDEPENDENT	IPV6	EQUIPMENT	VALIDATION

Many	organizations,	especially	small-	to	medium-sized	ones,	may	be	limited	to	testing	their	equipment	for	basic	IPv6
operational	viability.	While	such	testing	can	be	vital	to	ensure	the	organization’s	smooth	rollout	of	IPv6,	it	can’t	be
expected	to	uncover	and	validate	IPv6	protocol	behavior	beyond	the	somewhat	narrow	focus	on	the	existing	vendors
and	configurations.	These	are	specific	to	the	organization’s	current	network,	and	as	a	result,	future	changes	to	them
may	expose	protocol	components	that	haven’t	been	tested	for	reliable	behavior	and	interoperability.

Fortunately,	there	are	third-party	testing	laboratories	that	do	rigourous	IPv6	interoperability	and	standards
conformance	validation.	For	example,	the	University	of	New	Hampshire	InterOperability	Laboratory	(UNH-IOL)[59]
offers	“independent,	vendor-neutral	testing	with	a	focus	on	quality	assurance.”	Both	the	United	States	Government	v6
(USGv6)[60]	and	the	IPv6	Ready	Logo[61]	accreditation	programs	are	facilitated	through	the	UNH-IOL.

As	part	of	the	IPv6	support	validation	you	do	for	your	equipment,	you	may	want	to	familiarize	yourself	with	the
UNH-IOL	IPv6	test	suites.[62]	You	may	also	want	to	investigate	if	any	or	all	of	it	is	USGv6	or	IPv6	Ready	Logo
accredited	(and	if	not,	find	out	why	not	directly	from	the	vendor).

Depending	on	your	relationship	with	a	given	vendor,	details	regarding	IPv6	support	may
be	easy	or	hard	to	come	by.

You’ll	likely	discover	that	for	any	given	asset,	vendor	claims	of	IPv6	support	will	be	a
mixed	bag.	Some	critical	features	may	already	have	support,	while	others	may	not.

WORKING	WITH	VENDORS

You’ve	probably	noticed	my	use	of	the	phrase	vendor	claims	by	now.	This	is	not	to	suggest	that	vendors	are
inherently	untrustworthy	when	it	comes	to	assessing	IPv6	support.	Be	aware	that	the	path	to	effectively	supporting
IPv6	is	often	quite	difficult	for	them.	The	IETF	RFCs	they	rely	on	in	whatever	good-faith	efforts	they	make	to
implement	protocols	in	products	or	features	can	often	be	vague	or	operationally	obtuse.	Then	there’s	the	challenge	of
a	potentially	limited	customer	install	base	for	IPv6	features.	Even	for	their	customers	that	have	deployed	IPv6,	many
of	them	are	still	in	the	early	stages	of	IPv6	adoption.	Their	deployments	may	lack	the	kind	of	operational	complexity
or	load	that	uncovers	bugs,	feature	limitations,	or	general	lack	of	performance.

As	a	result,	try	to	get	at	least	the	following	from	your	vendors:

IPv6	RFC	support
Feature	(and/or	functional)	parity	list	or	matrix
Known	IPv6	bugs	and	issues
Existing	IPv6	customer	deployments	and	references
IPv6	feature	roadmap

Obviously,	there	is	always	a	fine	line	between	working	with	your	vendors	to	introduce	and	improve	the	features	you
need	and	letting	them	turn	your	production	network	into	an	extension	of	their	test	lab.	The	topic	of	technology	vendor
management	itself	is	probably	worthy	of	an	entire	book	(though	not	likely	a	particularly	exciting	one).	Just	be	aware
that	you’ll	need	to	work	as	closely	as	ever	with	your	critical	vendors	as	you	tackle	IPv6	adoption.

Regardless,	once	you	have	your	list	of	critical	features	and	the	vendor	insists	that	it
supports	IPv6,	it’s	time	to	put	on	your	skeptic’s	cap	(or	beret	or	fez	or	bonnet,	if	you
prefer)	and	get	to	work	testing,	testing,	testing	(i.e.,	step	2).	It’s	usually	neither	practical
nor	very	wise	to	test	new	technology	on	the	production	network.	Chances	are	you’ll
already	have	some	methods,	policies,	and	lab	infrastructure	in	place	for	the	controlled
introduction	of	novel	features.

Step	three	(testing	support	under	load)	may	be	difficult	to	accomplish	before	the	levels	of
IPv6	production	traffic	on	your	network	increase	significantly	(something	that	is	unlikely
to	happen	in	the	immediate	term).	Unless	you	have	an	established	testing	regime	that
includes	specialized	equipment	like	packet	generators	and	protocol	fuzzers,	it’s	unlikely



you’ll	be	able	to	really	put	the	performance	of	critical	IPv6	features	through	their	paces.

Even	in	the	absence	of	any	load	testing,	you	should	be	able	to	deduce	whether	a	particular
vendor	is	ready	for	IPv6	primetime	based	on	the	quality	and	quantity	of	IPv6	feature
support.	Their	timeliness	in	fixing	bugs,	improving	performance,	and	adding	features	for
IPv6	will	let	you	know	if	you	might	need	to	find	a	vendor	with	a	better	IPv6	offering	for	a
given	asset.	Further,	any	performance	testing	data	they	can	provide	should	demonstrate
that	their	gear	performs	adequately	when	configured	the	way	you	plan	to	deploy	it.

INCLUDING	IPV6	IN	TECH	REFRESH	CYCLES

As	mentioned,	vendor	support	for	IPv6	has	substantially	improved	in	the	last	few	years.	As	a	result,	organizations	that
have	regularly	performed	tech	refresh	during	this	time	period	have	also	improved	their	IT	infrastructure’s	IPv6
support	(whether	they	intended	to	or	not).

In	fact,	making	general	IPv6	support	a	must-have	for	any	tech	refresh	cycle	turns	out	to	be	an	excellent	way	to
accomplish	one	low-cost,	low-risk	goal	of	IPv6	adoption	with	little	or	no	additional	organizational	effort.

Also,	using	regular	tech	refresh	cycles	to	ensure	that	IPv6	is	properly	supported	helps	protect	the	enterprise’s
investment	in	internal	infrastructure	(which,	in	turn,	helps	make	the	business	case	for	IPv6	adoption).

So	if	IPv6	support	isn’t	already	included	in	your	tech	refresh	requirements,	be	sure	to	get	it	added	as	soon	as	possible.

Verifying	That	Your	ISP	Supports	IPv6
The	good	news	is	that	a	great	many	ISPs	currently	offer	IPv6	connectivity.	The	bad	news
is	that	they’re	all	over	the	map	in	terms	of	the	level	of	operational	support	for	IPv6.	Just
because	an	ISP	is	effectively	managing	their	IPv4-based	network	and	products	doesn’t
necessarily	mean	they	are	equally	adept	at	providing	good	IPv6	services.	Your	first	step	is
to	verify	that	they	support	IPv6	at	all.	And	if	not	today,	then	when?	It’s	not	hyperbole	to
say	that	an	ISP	without	IPv6	on	their	roadmap	has	no	future,	no	matter	how	affordable	or
reliable	they	currently	might	be.	Dual-stack	connectivity	over	your	existing	IPv4
connection(s)	is	ideal.	ISPs	that	are	relying	on	tunneling	over	IPv4	to	deliver	IPv6	Internet
services	may	not	be	ready	for	IPv6	primetime.[63]	If	your	ISP	doesn’t	support	IPv6	and	has
no	plans	to,	it	may	be	time	to	shop	around	for	a	new	provider.

Obtaining	an	IPv6	Address	Allocation
If	you’ve	obtained	IPv4	address	space	in	the	past,	either	from	your	ISP	or	from	your	RIR
(regional	Internet	registry),	the	process	is	much	the	same	in	IPv6.	Just	like	with	IPv4,
you’ll	need	some	information	before	submitting	your	request.	In	Chapter	6,	we’ll	go	into
more	detail	regarding	this	necessary	info,	ISP	and	RIR	policy,	as	well	as	what	you	can
expect	in	navigating	the	process.	For	now,	keep	in	mind	that	it	is	very	common	for
enterprises	to	underestimate	the	amount	of	IPv6	space	they	need	at	the	outset.	If	you’re
getting	ready	to	request	IPv6	address	space	and	you	already	have	a	rough	idea	of	how
much	you	think	you’ll	request,	you	may	want	to	skip	ahead	to	RIR	Allocation	Request	to
read	up	on	the	criteria	for	how	much	address	space	you	should	be	asking	for.



Phase	2:	External	Adoption
The	most	basic	definition	of	external	adoption	means	that	an	organization	makes	its
primary	website	available	over	the	IPv6	Internet.	Since	there	are	a	number	of	ways	such	a
website	can	be	traditionally	served	in	IPv4,	this	task	can	be	as	simple	as	checking	a	box	on
a	web-hosting	(or	content	delivery	network)	services	portal,	or	as	complex	as	provisioning
the	IPv6	Internet	to	servers	in	data	centers	around	the	globe.

As	we	suggested	earlier	in	the	chapter,	by	making	their	websites	available	over	IPv6,
organizations	ensure	that	requests	for	content	from	IPv6	hosts	are	not	translated	to	and
from	IPv4.	While	this	step	is	no	guarantee	that	IPv6	user	experience	will	be	improved,	it
eliminates	the	possibility	of	a	degraded	experience	for	those	users	due	to	translation.	The
organization	may	enjoy	a	competitive	advantage	over	those	organizations	that	keep	their
websites	exclusively	in	IPv4.

So	let’s	examine	what	the	most	basic	external	IPv6	adoption	configuration	looks	like
(Figure	3-1).	We’ll	assume	that	you’re	not	using	a	CDN	or	web	hosting	service.

The	diagram	makes	a	logical	distinction	between	the	IPv4	and	IPv6	Internet,	given	that	the
two	protocols	do	not	directly	interoperate.	Keep	in	mind,	however,	that	most	ISPs	are
relying	on	a	dual-stack	configuration	in	their	core	meaning	that,	although	they	are
logically	unique,	the	IPv4	and	IPv6	networks	share	the	same	routers	and	switches.

The	requesting	hosts	shown	at	the	edge	of	these	networks	are	configured	accordingly:	an
IPv4-only	host	connected	exclusively	to	the	IPv4	Internet	(our	typical	legacy
configuration);	an	IPv6-only	host	connected	to	the	IPv6	Internet;	and	a	dual-stack	host
connected	to	both	(via	the	same	dual-stack	CPE	and	ISP	connection).

Figure	3-1.	Enterprise	external	IPv6	adoption

An	Internet	border	router	that	supports	both	IPv4	and	IPv6	in	a	dual-stack	configuration
connects	the	enterprise	network	to	both	the	IPv4	and	IPv6	Internet.	The	dual-stack



plumbing	continues	through	a	supporting	firewall	and	onto	a	DMZ	segment	where	a	DNS
and	web	server	are	connected	(via	dual-stack	NICs).	The	OSes,	DNS	server,	and	web
server	applications	support	both	IPv4	and	IPv6.

Critically,	the	enterprise	internal	network	remains	IPv4-only,	relying	on	NAT	and	private
addressing	to	connect	to	the	IPv4	Internet.[64]

With	this	configuration,	requests	from	IPv6	hosts	will	be	responded	to	natively	over	IPv6.
IPv4	requests	will	be	served	over	IPv4	as	they	always	have	been	(though	from	a	dual-
stack	server).

What	about	requests	from	a	dual-stack	host?	To	determine	whether	they’ll	be	responded	to
over	IPv4	or	IPv6	(as	well	as	how	they’ll	decide	which	address	family	to	use),	we’ll	need
to	take	a	look	at	a	little	bit	more	IPv6	and	Internet	history.

Dual-Stack	Eyeballs	Are	Happy	Eyeballs
In	the	early	days	of	IPv6,	Internet	engineers	realized	that,	since	no	flag	day	was	possible
to	transition	all	at	once	to	IPv6,	other	more	subtle	mechanisms	would	have	to	be	devised
to	help	drive	IPv6	adoption.

One	of	these	mechanisms	is	found	in	RFC	3484.[65]	If	a	host	has	both	IPv4	and	IPv6
connectivity,	it	should	prefer	IPv6.	It’s	a	simple	and	effective	method	to	encourage	the	use
of	IPv6	on	dual-stack	hosts.	And	it	worked	well	enough	where	hosts	were	actually
connected	to	the	IPv6	Internet.	But	where	they	weren’t,	another	mechanism,	ostensibly
designed	to	encourage	IPv6	transition,	broke	things	for	these	dual-stacked	hosts:	namely,
that	IPv6	AAAA	(forward	mapping)	DNS	records	can	be	delivered	to	a	host	using	IPv4.

For	example,	let’s	say	a	residential	subscriber’s	cable	modem	is	connected	to	the	Internet
using	only	IPv4.	The	ISP	doesn’t	yet	support	IPv6	services	but	plans	to	offer	IPv6
connectivity	within	the	next	six	months.	In	the	meantime,	the	subscriber	connects	his
laptop	to	the	home	network.	The	laptop	is	running	Windows	7	and	gets	a	private	IPv4
address	from	the	DHCP	server	running	on	the	cable	modem.	The	cable	modem	has	a
public	IPv4	address	it	is	using	to	NAT[66]	any	internal	private	addresses	it	assigns.

But	let’s	also	imagine	that	someone	else	in	the	household	hooked	up	an	additional	home
router	to	the	local	network	(not	to	use	as	a	router	but	merely	to	test	out	the	device’s
WLAN	capabilities).	The	additional	home	router	supports	IPv6	out	of	the	box	and	is
sending	out	IPv6	ND	RAs	on	the	local	network	segment.

Someone	then	connects	a	laptop	to	the	network.	The	laptop	gets	an	IPv6	router
advertisement	from	the	second	home	router	and	proceeds	to	self-configure	a	Link-Local
address.	The	laptop	now	believes	it	has	both	an	IPv4	and	IPv6	address.

When	the	laptop	user	opens	a	browser,	a	DNS	query	for	the	start	page	is	sent.	The	query
requests	an	A	record	for	www.example.com	and	gets	a	response.	Because	it	has	an	IPv6
address	configured,	the	querier	then	requests	and	receives	a	AAAA	record	as	well	(see
Example	3-1).

Example	3-1.	Forward	A	and	AAAA	record	for	www.example.com
	www				A							192.0.2.34														;	example.com's	web	server

								AAAA				2001:db8:667:776::34				;	same	web	server's	dual-stack	IPv6	address

http://bit.ly/rfc-3484


Both	responses	are	delivered	over	the	existing	IPv4	connection.	Now,	to	get	to	the
www.example.com	website,	the	subscriber’s	laptop	has	an	IPv4	address	and	an	IPv6
address	to	choose	from.	Which	one	will	it	choose?

Up	until	a	few	years	ago,	the	default	address	selection	policy	found	in	RFC	3484	was	the
one	commonly	used	in	dual-stack	implementations.	This	policy	gave	IPv6	preference	over
IPv4.	In	that	instance,	the	laptop,	having	a	valid	IPv6	address,	would	make	the	assumption
it’s	connected	to	the	IPv6	Internet.	It	would	first	attempt	to	connect	to
2001:db8:667:776::34.	But	because	the	laptop	is	not	actually	connected	to	the	IPv6
Internet,	it	wouldn’t	be	able	to	connect.	After	some	period	of	time	set	by	the	OS	(as	long
as	several	minutes	in	some	cases),	the	attempted	connection	to	IPv6	would	time	out	and
another	connection	would	then	be	attempted	over	IPv4	(which,	in	our	example,	would
succeed).

This	was	the	situation	prior	to	World	IPv6	Day	in	June	of	2011	and	the	reason	that	no
major	content	providers	had	yet	enabled	AAAA	records	for	their	primary	websites	(i.e.,
www.google.com,	www.yahoo.com,	etc.).	Knowing	that	some	nontrivial	number	of
Internet	subscribers	(much	less	than	1%	of	all	Internet	users	but	still	likely	numbering	in
the	tens	if	not	hundreds	of	thousands)	had	the	same	configuration	as	our	hypothetical
subscriber’s	laptop	from	our	previous	example	meant	that	configuring	these	AAAA
records	would	result	in	impatient	users	believing	that	www.google.com	was	down	(then
maybe	switching	over	to	www.yahoo.com,	which,	not	having	a	AAAA	record	configured,
would	come	up	immediately).	Result:	possible	brand	damage	to	content	providers	daring
to	significantly	adopt	IPv6	early.

World	IPv6	Day	was	organized	to	test	the	extent	of	this	IPv6	brokenness	while	avoiding
exposing	individual	content	providers	to	any	exclusive	brand	damage	it	might	do.	If	all	the
major	content	providers	enabled	AAAA	records	for	24	hours,	users	with	broken
configurations	would	have	trouble	getting	to	any	of	their	sites	(not	just	to	those	providers
brave	or	foolhardy	enough	to	have	unilaterally	configured	AAAAs	prior	to	World	IPv6
Day).

At	this	point,	you’re	probably	wondering	why	couldn’t	the	OS	or	browser	just	test	the
connection	to	IPv4	and	IPv6	simultaneously	and	pick	the	one	that	works	(and	perhaps
even	performs	better)?	Well	that’s	precisely	what	most	OSes	and	browsers	do	now,	thanks
to	Happy	Eyeballs.[67]	Following	the	success	of	World	IPv6	Day,	another	event	was
planned	for	June	of	2012.	World	IPv6	Launch	aimed,	among	other	goals,	to	have	major
content	providers,	as	well	as	anyone	else	who	wanted	to	participate,	configure	AAAA
records	for	their	main	websites	and	leave	them	permanently	enabled.	Though	the	content
providers	decided	that	the	actual	levels	of	IPv6	brokenness	were	acceptably	low,	the	rapid
and	significant	adoption	of	the	Happy	Eyeballs	approach	to	address	selection	in	browsers
and	OSes	made	the	issue	even	less	of	a	potential	concern	for	them.

And	that’s	the	reason	why	organizations	today	should	feel	confident	in	configuring	AAAA
records,	leaving	them	enabled,	and	making	their	primary	websites	permanently	available
over	IPv6.



IPV6	CDNS	AND	WEB	HOSTING

Many	major	web	hosting	companies	and	content	delivery	networks	(CDNs)	offer	IPv6	support	for	at	least	some	of
their	services.	For	organizations	already	using	CDNs	or	hosting	services,	this	can	be	the	easiest	way	to	accomplish
external	IPv6	adoption.

Some	forward-thinking	providers	are	even	moving	to	an	IPv6	on-by-default	or	opt-out	posture	where	any	newly
provisioned	service	offers	IPv6	by	default	unless	the	customer	explicitly	chooses	not	to	enable	it.

Regardless,	as	is	true	with	these	services	in	IPv4,	the	potential	advantages	are	many	and	include:

More	rapid	provision	of	IPv6	accessibility	for	websites	and	online	content
Dynamic	scale	of	services	over	time	to	support	increasing	levels	of	IPv6	traffic
Geographical	diversity	to	shorten	distance	to	content	(and	improve	performance	and	user	experience)	for
requestors
Dual-stack	or	IPv4-only	interfaces	to	make	website	and	content	management	and	upload	easier

If	you’re	already	using	a	web	hosting	or	CDN	service,	you’ll	need	to	check	with	them	to	see	what	level	of	IPv6
support	they	offer.	You	may	want	to	find	out	the	following:

Do	you	offer	IPv6	everywhere	you	offer	IPv4?

As	we	mentioned,	a	key	advantage	of	using	a	web	hosting	service	or	content	delivery	network	is	geographical
ubiquity	and	diversity	of	services	and	the	improved	performance	that	may	offer.	But	for	this	performance	advantage
to	be	uniformly	realized	in	IPv6,	the	provider	in	question	would	need	to	have	IPv6	provisioned	anywhere	IPv4
currently	is.	As	with	provisioning	these	services	in-house,	it	might	be	initially	acceptable	to	have	less	ubiquity	and
diversity,	especially	if	you	are	in	a	proof-of-concept	phase	for	deploying	IPv6.	Regardless,	you’ll	want	to	know	what
the	provider’s	roadmap	to	full	IPv6	parity	is	in	this	area.

Are	your	management	and	IPv6-content	upload	interfaces	available	in	IPv4	(or	IPv4-only)?

A	possible	advantage	for	companies	leveraging	a	web	hosting	or	CDN	in	order	to	make	their	websites	and	content
available	over	IPv6	is	that	little	or	no	in-house	IPv6	infrastructure	may	be	needed	right	away.	You’ll	want	to	check
with	the	provider	to	make	sure	that	you’ll	be	able	to	manage	and	upload	content	from	your	IPv4-only	or	dual-stack
hosts	and	servers	(depending	on	where	your	organization	is	at	with	overall	IPv6	adoption).	You’ll	also	want	to	make
sure	that	the	provider	either	currently	offers,	or	has	a	plan	for	offering,	content	management	and	upload	via	IPv6.

Do	you	offer	IPv6	reporting	and	visibility	equal	to	what’s	currently	available	in	IPv4?

Another	critical	benefit	of	using	a	web	hosting	or	content	provider	is	the	visibility	into,	and	detailed	reporting	for,	the
services	they	offer.	The	data	from	these	features	can	often	be	used	not	just	to	ensure	performance	but	also	to	generate
metrics	that	can	improve	the	reach	of	the	company	into	better	target	markets.	Of	course,	all	of	this	reporting	and
visibility	needs	to	work	for	IPv6	traffic	as	well	as	IPv4,	and	you’ll	want	to	make	sure	that	the	provider	supports,	or
plans	to	support,	all	such	features	equally	well	in	IPv6.



Phase	3:	Internal	Adoption
For	most	organizations,	the	final	phase	of	IPv6	adoption	is	the	deployment	of	IPv6	on
internal	networks.	Traditionally,	most	enterprises	have	been	slow	in	tackling	this	phase,
likely	due	to	a	number	of	unique	factors,	including:

Reliance	on	NAT	and	private	address	space	architecture	and	practice	for	internal
networks
Business	models	and	revenue	streams	not	reliant	on	continually	scaling	network
services	(and	the	IP	address	supply	such	services	require)
Little	or	no	need	to	be	seen	as	early	adopters	of	transformative	technologies
Little	or	no	operational	best	practice	to	leverage	from	other	enterprises	due	to	slow
overall	adoption
Discouraging	assumptions	that	internal	adoption	is	more	complex	or	expensive	than
other	phases

Let’s	examine	a	few	of	these	factors	individually	before	discussing	the	potential	risks	and
costs	of	delaying	internal	IPv6	adoption.	We’ll	then	look	at	steps	that	organizations	can
take	to	make	internal	IPv6	adoption	more	manageable.

Reliance	on	NAT
We’ve	already	discussed	the	pros	and	cons	of	NAT	for	enterprise	networks.

On	the	plus	side,	NAT	reduced	the	rate	of	consumption	of	limited	public	IPv4	addresses
by	networks	and	hosts	that	didn’t	need	to	be	directly	accessible	from	the	Internet.	This
delayed	the	inevitable	arrival	of	IPv4	exhaustion.	NAT	also	allowed	enterprises	to	take
advantage	of	the	relatively	larger	space	available	with	private	IPv4	in	planning	their
address	architectures.	It	has	also	given	enterprises	much	more	flexibility	to	schedule	(and
frankly,	delay)	their	internal	adoption	of	IPv6.

Meanwhile,	this	flexibility	has	too	often	led	to	an	insufficient	recognition	of	the	potential
risks	and	costs	of	failing	to	adopt	IPv6	internally.

But	setting	aside	IPv6	altogether,	IPv4	NAT’s	deficiencies	are	often	ignored	or
overlooked.	We	mentioned	in	Chapter	2	both	the	misperceptions	of	improved	security
through	obscurity,	as	well	as	the	operationally	taxing	impact	of	NAT	on	application
features	and	performance.

IPv6	Business	Case	Redux
A	more	general	business	case	for	IPv6	adoption	is	perhaps	easier	to	make	for	the	first	two
phases	of	IPv6	adoption.	Given	the	growth	of	IPv6	adoption	across	the	Internet,	it’s
impossible	at	this	point	to	argue	that	any	enterprise	IT	organization	can	avoid	IPv6
altogether.	It	would	almost	certainly	be	a	form	of	career	suicide	for	individual	network	or
system	administrators	or	engineers	to	studiously	ignore	IPv6	simply	because	their	current
company	has	mistakenly	decided	to	do	so.	Thus,	while	the	scope	of	what	you’ll	need	to
know	and	plan	for	in	IPv6	might	vary	from	organization	to	organization,	there	should	be
little	doubt	that	some	knowledge	and	planning	are	absolutely	essential.

Since	IPv6	deployment	by	mobile	and	broadband	subscriber	service	providers	is	already
happening	at	accelerating	rates	due	to	the	lack	of	routable	IPv4	(and	the	additional



expense	and	operational	complexity	of	CGN/LSN	solutions),	making	websites	and	content
available	through	external	IPv6	adoption	is	the	only	way	for	organizations	to	directly
reach	these	new	subscribers.

The	business	case	for	internal	enterprise	IPv6	adoption	is	usually	more	general,	focusing
on	how	even	modest	uptake	of	IPv6	among	internal	enterprise	networks	will,	over	time,
result	in	evolution	of	operational	practices	(and,	as	elaborated	on	below,	premium	costs	for
continued	IPv4	support	provided	by	vendors	and	SPs).

IPv6	(In)Security
Considering	that	all	modern	OSes	now	have	IPv6	enabled	by	default,	IPv6	is	already
running	on	any	network	where	you	haven’t	explicitly	disabled	it	(not	an	option	for	reasons
we’ll	see	next).	This	means	that	IPv6	is	running	essentially	unmanaged.	As	a	result,	the
requirements	of	the	existing	network	security	policy	where	IPv4	is	concerned	(as	well	as
the	security	tools	providing	visibility	and	mature	operational	practice	that	go	with	it)	are
not	being	met	for	IPv6.

This	lack	of	operational	awareness	and	practice	results	in	a	weakened	state	of	network	and
host	security	that	threatens	business	continuity,	whether	by	error	or	misconduct.	And
without	the	security	tools	and	operational	practice	in	place	to	effectively	monitor	IPv6
traffic,	the	security	policy	is	either	being	directly	and	actively	violated	or	is	out-of-date
with	no	reference	to	IPv6.	This	noncompliance	will	become	more	costly	over	time.

Considering	that	it	is	only	a	matter	of	time	before	new	services	will	need	to	be	enabled	in
an	IPv6	environment,	an	ongoing	lack	of	training,	proper	tools,	and	operational	experience
will	continue	to	erode	business	continuity.

THE	LATENT	COSTS	OF	IPV4

There’s	an	effort	at	large	among	the	hardcore	IPv6	adoption	community	that	skeptics	could	be	perhaps	excused	for
deriding	as	mere	semantics:	IPv6	should	now	simply	be	called	IP	while	IPv4	should	now	and	forever	be	referred	to	as
the	legacy	protocol.

Before	you	scoff,	though,	keep	in	mind	that	a	common	effort	among	some	organizations	(both	service	providers	and
enterprises)	that	have	widely	adopted	IPv6	using	the	preferred	dual-stack	approach	is	now	trying	to	figure	out	how	to
decommission	IPv4	sooner	rather	than	later.

There	are	a	few	reasons	for	this.

It’s	absolutely	the	case	that	dual-stack	is	a	necessary	intermediate	step	to	facilitate	the	introduction	of	IPv6	into	the
network	while	simultaneously	protecting	the	existing	IPv4	production	network	(not	to	mention	controlling	the	risks
and	costs	associated	with	failing	to	adopt	IPv6	in	time).	But	it	should	be	uncontroversial	to	point	out	that	managing
two	address	protocols	over	time	(however	necessary	initially	until	IPv6	operational	and	architectural	practice	has
matured)	is	more	complex	(and	potentially	costly)	than	managing	one.

Service	providers	have	seen	their	historical	revenue	sources	(mere	bandwidth	and	connectivity)	commoditized	out	of
profitability.	The	razor-thin	margins	that	remain	have	left	these	providers	scrabbling	for	any	opportunities	to
recognize	new	revenue	streams.	As	a	result,	they’re	really	looking	forward	to	charging	you	an	added	premium	for	any
aspect	of	their	legacy	IPv4	service,	from	connectivity	to	services	to	addresses.	If	you’re	not	running	IPv6	and	have	no
upgrade	path,	you’ll	have	to	pay	what	they’re	asking	(or	go	with	a	bargain	IPv4	provider:	how	retro!).

At	some	point	in	the	near	future,	vendors	will	be	making	similar	assessments	as	they	allocate	product	and	feature
strategy	resources.	While	continued	IPv4	feature	support	may	not	directly	cost	more,	customers	may	discover	that
vendor	support	and	engineering	are	slower	to	resolve	issues	with	the	legacy	protocol.	This	could	result	in	additional
operational	expense	(not	to	mention	much	aggravation!).

Internal	Adoption	and	Operational	Wisdom



While	IPv6	deployment	on	the	internal	networks	of	large,	multinational	companies	has
accelerated,	these	organizations	are	generally	not	inclined	to	publicly	share	too	many	of
the	details	of	their	IPv6	initiatives.	This	makes	it	difficult	to	derive	business	cases	from
their	IPv6	adoption	efforts,	and	it	reduces	any	bandwagon	effect	among	other	enterprises
we	might	otherwise	see.	It	also	reduces	the	operational	wisdom	and	guidance	available	to
enterprises.

A	lack	of	operational	guidance	can	cause	enterprises	to	make	unforced	errors	at	the	early
stages	of	their	internal	adoption	efforts.

For	instance,	members	of	the	enterprise	security	team	may	learn	that	IPv6	is	on	by	default
and	perhaps	recognize	that	it	is	generating	unmonitored	traffic	on	the	network.	The
network	security	monitoring	tools	in	use	may	not	offer	IPv6	support,	or	unfortunately
more	likely,	the	team	may	lack	IPv6	expertise,	as	well	as	the	time	and	resource
commitment	needed	to	obtain	it.	Rather	than	addressing	these	causes,	and	with	the	best
intentions	for	proper	security,	they’ll	insist	that	IPv6	be	disabled	on	servers	and	hosts.

A	side	effect	of	this	step	may	be	to	weaken	or	break	OS	features	like	Failover	Clustering
in	Microsoft	Windows	Server,	which	currently	prefers	IPv6	both	in	production	and	in
vendor	test	environments.	Other	features	like	Microsoft	Direct	Access	rely	on	IPv6	to
provide	end-to-end	addressing	(something	not	really	possible	to	do	with	IPv4).	And	like
many	other	Microsoft	services,	Exchange	Server	2013	is	considered	out-of-scope	for
technical	support	when	IPv6	is	disabled.

Another	possible	error	is	for	enterprise	IT	to	assume	that	the	existing	architecture
leveraging	NAT	and	private	addressing	in	IPv4	should	be	replicated	in	IPv6.	This	can	lead
to	ULA	being	deployed	internally	with	either	NAT66	or	NPTv6	at	the	edge.	While	there
certainly	could	be	network	and	business	requirements	that	make	this	configuration
desirable,	the	recommended	architecture	for	nearly	all	enterprise	networks	uses	global
unicast	addresses	everywhere.

[56]	And	as	we	mentioned	at	the	end	of	Chapter	1,	large	mobile	and	broadband	service	providers	in	North	America,	like
Comcast	and	Verizon,	are	not	merely	reacting	to	this	trend.	Instead,	they’re	getting	out	in	front	of	it	with	IPv6.

[57]	The	same	will	undoubtedly	prove	true	of	IoT	networks	as	they	increase	in	number	and	scale.

[58]	If	formal	training	cannot	be	budgeted,	check	with	your	equipment	vendors	and	partners	to	see	if	they	offer	any
specialized	training	around	IPv6,	which	can	often	be	had	for	little	or	no	cost	(and	can	help	you	identify	which	of	your
vendors	and	partners	are	serious	about	their	IPv6	support).

[59]	www.iol.unh.edu

[60]	http://bit.ly/nist-usgv6

[61]	www.ipv6ready.org

[62]	http://bit.ly/ipv6-testing

[63]	There	are	exceptions	to	this:	certain	IPv4/IPv6	transition	technologies	that	rely	on	tunneling	have	historically	been
generally	well-managed	by	providers	like	Hurricane	Electric,	Free	Telecom	(France),	and	Comcast.

[64]	An	IPv6	or	dual-stack	segment	might	be	connected	through	to	the	DMZ	in	order	to	facilitate	management	and
testing	of	the	IPv6	resources	located	there.

http://www.iol.unh.edu
http://bit.ly/nist-usgv6
https://www.ipv6ready.org
http://bit.ly/ipv6-testing


[65]	RFC	3484	has	since	become	obsolete	by	RFC	6724,	which	includes	updates	to	the	address	preferences	and	selection
algorithm.

[66]	Technically,	PAT	(or	port	address	resolution).

[67]	RFC	3484	(along	with	its	replacement,	RFC	6724)	technically	allows	for	alternate	address	selection	policy	and
methods,	such	as	Happy	Eyeballs	and	Windows	Network	Connection	Status	Indicator	(NCSI).

http://bit.ly/rfc-6724
http://bit.ly/rfc-6555




Part	II.	Design
When	I	am	working	on	a	problem,	I	never	think	about	beauty	but	when	I	have	finished,	if	the	solution	is	not
beautiful,	I	know	it	is	wrong.

—	R.	Buckminster	Fuller

Luck	is	the	residue	of	design.

—	Branch	Rickey

The	next	four	chapters	will	cover	the	topics	essential	to	designing	an	IPv6	addressing	plan.
In	Chapter	4,	we’ll	take	a	deeper	look	at	IPv6	subnetting	while	Chapter	5	discusses	the
core	concepts	and	principles	behind	IPv6	address	planning.	In	Chapter	6,	we’ll	review	the
methods	of	obtaining	IPv6	address	allocations	(as	well	as	the	key	policies	that	impact	how
we	get	and	use	them).	Chapter	7	puts	it	all	together	to	walk	you	through	the	creation	of	an
IPv6	address	plan.





Chapter	4.	IPv6	Subnetting
As	I	was	going	to	St.	Ives,

I	met	a	man	with	seven	wives,

Each	wife	had	seven	sacks,

Each	sack	had	seven	cats,

Each	cat	had	seven	kits:

Kits,	cats,	sacks,	and	wives,

How	many	were	there	going	to	St.	Ives?

—	Traditional	Nursery	Rhyme



Introduction
We’ve	discussed	how	early	efforts	to	successfully	slow	the	depletion	of	IPv4	included
techniques	like	VLSM,	CIDR,	and	NAT.	In	particular,	the	granular	subnetting	provided	by
VLSM	became	a	common	(and	engrained)	practice	in	IPv4	network	architecture	and
address	planning.	But	the	enormous	scale	of	IPv6	and	the	resulting	bounty	of	additional
bits	in	a	given	address	require	new	subnetting	methods.	These	methods	provide
opportunities	to	improve	both	the	ease	and	effectiveness	of	IPv6	address	planning.	In	this
chapter,	we’ll	cover	these	IPv6	subnetting	techniques	and	the	legacy	IPv4	subnetting
methods	they	differ	from	(and	improve	upon).



Subnetting	IPv4:	A	Brief	Review
Before	we	dig	into	IPv6	subnetting	methods,	let’s	briefly	review	their	counterparts	in
IPv4.

As	we’ve	already	discussed,	subnetting	in	IPv4	optimistically	started	out	as	class-based;
i.e.,	using	only	two	classes	of	subnets	to	facilitate	aggregation	and	reduce	the	demand
placed	on	router	memory	and	CPU	resources	(as	well	as	create	some	hierarchical
consistency	within	the	Internet).

The	first	two	classes	of	subnets	in	IPv4	were	as	follows:

Class	A

8	bits	to	identify	the	network,	24	bits	for	host	addressing

Class	B

16	bits	to	identify	the	network,	16	bits	for	host	addressing

But	as	the	Internet	began	to	grow,	most	organizations	discovered	that	they	had	an
abundance	of	unused	address	space.	In	general,	this	situation	was	beneficial	to	them
individually:	they	had	plenty	of	addresses	for	current	use	and	future	growth,	plus	they
could	aggregate	their	networks	efficiently	and	maintain	improved	router	performance.

The	situation	was	not	so	beneficial	for	the	addressing	needs	of	a	rapidly	expanding
Internet.	So	class	C	networks	were	proposed	as	a	way	to	allow	for	much	more	granular
allocation	to	smaller	organizations	with	more	modest	addressing	requirements.

Class	C

24	bits	to	identify	the	network,	8	bits	for	host	addressing

The	254	host	addresses	available	in	a	class	C	network[68]	made	them	ideal	for	assigning	to
organizations	that	had	more	modest	host	requirements,	especially	leaf	or	stub	networks.

But	many	more	organizations	(especially	small-	and	medium-sized	ISPs)	would	need
multiple	class	Cs	for	their	host	addressing,	though	perhaps	not	as	much	as	an	entire	class
B.	Allocating	more	than	1	class	C	but	fewer	than	256	of	them	meant	that	there	would
potentially	be	many	more	routing	table	entries.	In	addition,	for	some	network	architectures
and	topologies,	even	a	class	C	could	end	up	being	wasteful	if	assigned	to	one	segment	or
interface.

Either	way,	even	with	class	Cs,	the	classful	addressing	approach	was	simply	not
sophisticated	enough	to	support	sufficient	host	addressing	and	efficient	routing.	Some
other	mechanism	would	be	needed	to	allow	the	aggregation	of	any	number	of	smaller
subnets	into	larger	ones.

VLSM	and	CIDR	provided	this	mechanism.	It	allowed	for	any	number	of	the	32	bits	of
the	IPv4	address	to	be	used	for	the	network	ID	while	those	bits	that	remained	would
define	the	host	addressing.	As	an	example,	say	we	had	a	class	C	network	that	we	wanted
to	use	to	number	hosts	on	various	segments:

192.0.2.0

Because	it’s	a	class	C,	I	know	that	I	have	254	usable	host	addresses.



192.0.2.1	to	192.0.2.254

As	with	any	IPv4	address,	the	subnet	mask	must	accompany	it	so	that	it’s	clear	what	bits
are	reserved	for	the	network	(with	the	remaining	bits	set	aside	for	the	hosts).	The	subnet
mask	for	a	class	C	looks	like	this:

255.255.255.0

The	mask	works	by	a	bitwise	logical	AND	operation:
192.0.2.55													=							11000000	00000000	00000010	00110111

255.255.255.0										=							11111111	11111111	11111111	00000000

																																—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		

—		—		—		—		—		—		—		—		—		—		—		—		—	

															Logical	AND:				11000000	00000000	00000010	00000000

You’ll	notice	that	the	host	bits	are	“zeroed	out”	by	the	operation,	while	the	network	bits
“pass	through”	the	mask.	Converting	from	binary	back	to	decimal	gives	us:

192.0.2.0

In	my	hypothetical	network,	let’s	stipulate	that	I	have	two	segments	that	each	have	50
servers	and	that	I	expect	to	grow	by	25%	a	year	for	the	next	three	years:[69]

50	+	3(50	x	0.25)	=	server	count	on	segment	after	3	years

After	three	years,	neither	segment	will	have	more	than	90	servers.	I	need	enough	bits	to
support	a	subnet	with	a	host	count	of	at	least	90.	According	to	binary	math,	the	smallest
subnet	to	support	90	servers	is	provided	by	7	bits	(though	recall	that	I	lose	2	addresses	to
the	network	and	broadcast	addresses):

90	servers	using	126	available	addresses	equates	to	just	a	little	above	70%	utilization,	so
I’ve	still	got	a	little	room	for	growth	before	I’ll	potentially	need	to	renumber.

Since	we’ll	need	7	bits	for	host	addressing	for	each	segment,	that	leaves	25	bits	for	the
network,	giving	us	the	following	subnet	mask:

255.255.255.128

or
11111111	11111111	11111111	10000000

Recall	that	our	original	class	C	network	had	a	mask	of	255.255.255.0	and	24	bits.

The	two	possible	values	of	the	25th	bit	give	us	two	networks:
192.0.2.0														=							11000000	00000000	00000010	00000000

255.255.255.128								=							11111111	11111111	11111111	10000000

																																—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		

—		—		—		—		—		—		—		—		—		—		—		—		—	

															Logical	AND:				11000000	00000000	00000010	00000000	=	192.0.2.0

192.0.2.128												=							11000000	00000000	00000010	10000000

255.255.255.128								=							11111111	11111111	11111111	10000000

																																—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		—		

—		—		—		—		—		—		—		—		—		—		—		—		—	

															Logical	AND:				11000000	00000000	00000010	10000000	=	192.0.2.128

The	7	bits	remaining	provide	128	addresses,	giving	our	two	new	networks	128	total
addresses	each:

192.0.2.0	to	192.0.2.127

and



192.0.2.128	to	192.0.2.255

Computers	rely	on	binary	operations	that	require	the	inclusion	of	a	subnet	mask	whenever
an	IPv4	address	is	represented.	It’s	more	convenient	for	humans	to	represent	the	subnet
mask	as	either	a	dotted	quad	of	octets	(e.g.,	255.255.255.0)	or	using	CIDR	notation;	i.e.,
“/nn”	notation	where	the	network	bits	(represented	by	“nn”)	of	an	address	are	appended	to
the	end	of	the	address	after	a	“/”	(e.g.,	192.0.2.0/24).	IPv6	uses	CIDR	notation	exclusively.

The	CIDR	and	VLSM	methods	led	to	a	chain	of	significant	design	and	operational
consequences.	Since	it	allowed	for	aggregation	of	networks	beyond	the	8-bit	boundaries	of
the	classful	networks,	the	need	for	efficient	aggregation	and	routing	could	be	balanced
against	the	need	for	sufficient	host	addressing.

This,	in	turn,	led	to	the	practice	of	defining	and	assigning	to	a	link	the	smallest	practical
subnet	to	support	immediate	and	anticipated	host	counts.	Proper	aggregation	and	efficient
routing,	while	still	possible,	were	more	often	a	secondary	concern	(or	a	lucky	accident).
Thus,	the	definition	of	what	makes	a	particular	address	plan	efficient	changed	over	time.	It
went	from	one	that	emphasized	the	importance	of	fewer	routes	in	the	routing	table	and
consequent	router	resource	conservation	to	one	that	emphasized	the	preservation	of	host
addresses.	As	mentioned	earlier,	this	is	the	essential	element	of	IPv4	thinking.



A	Note	on	Efficiency
The	original	challenge	with	IPv4	subnetting	was	defining	and	assigning	subnets	that
provided	sufficient	host	addresses	per	segment	while	at	the	same	time	not	having	too
many	unused	addresses	left	over.	We	might	have	heard	an	address	plan	exclusively
referred	to	as	“efficient”	merely	because	it	provided	sufficient	IP	addressing	for	the
network.

But	this	form	of	efficiency	is	impossible	to	maintain	and	improve,	given	an	ever-
dwindling	supply	of	addresses.	Because	it’s	often	not	feasible	to	reliably	predict	how
quickly	any	given	network	might	grow,	administrators	could	face	either	running	out	of
available	addresses	on	a	segment	and	having	to	renumber	in	order	to	increase	subnet	size
(or	having	underutilized	subnet	assignments	tying	up	subnet	bits	that	could	be	assigned
elsewhere	to	support	growth).[70]

In	the	first	chapter,	we	reviewed	the	dilemma	of	scale	and	the	difficulty	of	balancing	the
requirements	of	sufficient	host	addressing	with	efficient	routing	(e.g.,	conservation	of
router	memory	and	CPU	by	aggregation	of	prefixes)	in	IPv4.	IPv6	was	designed	in	a	way
to	eliminate	the	tension	between	these	two	requirements.	It	does	this	by	first	providing	a
standard	interface	subnet	with	64	bits	of	host	addressing.	With	1.8x1019	addresses,
overutilization	of	addresses	on	a	single	network	interface	simply	isn’t	possible.	This,	in
turn,	allows	network	engineers	designing	a	site	to	aggregate	interface	subnets	for,	among
other	potential	benefits,	routing	efficiency.

But	what	the	heck	do	we	need	routing	efficiency	for	anyway?	To	answer	that	is	to	get	at
why	we	need	routing	at	all.

We	often	talk	about	networks	being	flat	or	hierarchical,	where,	in	the	simplest	terms,	the
former	suggests	a	switched	network	while	the	latter	usually	implies	a	routed	one.	Each
type	of	network	has	pros	and	cons.	Flat	networks	are	simple.	The	flattest	network	is	a
collection	of	hosts	sharing	a	transmission	medium	and	communicating	with	each	other
directly.	As	long	as	I’ve	got	enough	unique	network	addresses,	switch	ports,	and
bandwidth,	I	can	keep	adding	hosts.	That	is,	up	to	a	point.

Eventually,	however,	the	network	becomes	overloaded.	The	protocols	allowing
communication	between	the	hosts	have	overhead	that	consumes	bandwidth.	The	switch
ports	have	to	keep	track	of	hardware	addresses	and	have	limited	memory	with	which	to	do
so.	And	we	need	some	way	of	keeping	those	switches	from	forming	loops	and	causing
address	table	corruption	and	broadcast	storms.	The	physical	limitations	of	the	transmission
medium	itself	begin	to	interfere	with	reliable	network	state	information	once	too	great	a
distance	separates	hosts	and	latency	increases.

It	turns	out	that	all	networks	require	state	information:	Where	are	the	hosts?	What	paths
are	available	to	connect	them?	Is	a	particular	host	still	connected?

Network	segmentation	is	a	way	of	limiting	the	amount	of	state	information	that	must	be
managed	for	a	given	collection	of	hosts.	Routing	was	invented	to	help	accomplish	this	by
providing	a	way	to	aggregate	host	addresses	and	reduce	the	amount	of	state	information
any	single	router	or	switch	had	to	manage	and	maintain.	But	beyond	just	overcoming	the
limitations	of	the	networking	equipment	and	physics,	the	hierarchy	that	results	from



segmentation	and	routing	creates	a	logical	framework	that	makes	it	much	easier	for
humans	to	effectively	manage	and	maintain	networks.

Summarization	creates	logical	boundaries	that	can	be	correlated	to	the	administrative
entities	for	which	we	created	the	networks	in	the	first	place.	These	boundaries	are	essential
for	making	distinctions	about	what	constitutes	the	inside	and	outside	of	the	network	(and
which	side	a	given	host	or	set	of	networks	should	be	on).	From	these	distinctions,
administrative	responsibilities	and	lines	of	demarcation	are	established.	Security	policies
are	designed	and	instantiated.	And	so	it	goes.

SUMMARIZATION

We’ve	mentioned	summarization	as	well	as	its	synonym	aggregation	(both	sometimes	referred	to	as	supernetting)	at
different	times	in	the	previous	chapters.	It’s	a	subject	that	should	already	be	familiar	to	us	from	designing,	building,
and	running	IPv4	networks.	But	it’s	probably	a	good	idea	to	review	it	in	the	context	of	our	current	IPv6	subnetting
discussion.

Simply	stated,	summarization	is	the	combining	of	smaller	networks	into	larger	ones.	Recall	that	only	contiguous
networks	of	the	same	size	(i.e.,	bit	length)	can	be	summarized:

/64	+	/64	=	/63

/63	+	/63	=	/62

/62	+	/62	=	/61

etc.

Summarization	provides	multiple	benefits:

It	reduces	the	total	number	of	routes	(and	routing	table	entries)	that	routers	in	the	network	must	learn	and
keep	state	information	on.

This	is	by	far	the	most	important	benefit	of	network	aggregation.	By	reducing	the	number	of	routes	that	routers	must
learn	and	keep	track	of,	memory	and	CPU	resources	are	preserved,	potentially	delaying	costly	router	upgrades	or
replacement.[71]

A	reduced	number	of	routes	can	also	lead	to	faster	convergence	and	improved	performance	of	the	network	as	fewer
network	prefixes	mean	that	updates	between	routers	can	be	sent	and	processed	faster.

It	can	reduce	the	administrative	overhead	associated	with	tracking	address	assignments.

Aggregation	can	reduce	the	number	of	entries	in	network	management	and	IPAM	systems,	reducing	the	amount	of
overall	data	network	operations	personnel	and	process	must	track	and	potentially	reducing	operational	expenditures.

It	can	help	create	well-defined	network	and	administrative	boundaries	that	allow	us	to	simplify	security	policy
and	improve	operations	performance.

Often,	network	aggregation	correlates	to	well-defined	administrative	boundaries.	This	can	greatly	simplify	the
definition	and	configuration	of	security	policy	through	ACLs	and	policy	documentation.	It	can	also	improve	network
operations	efficiency,	leading	to	faster	isolation	and	resolution	of	issues	and	problems	on	the	network.

These	logical	boundaries	facilitated	by	summarization	are	much	easier	to	establish	in
IPv6.	And	because	renumbering	and	resubnetting	to	support	changes	in	interface	host
counts	are	no	longer	necessary,	such	logical	boundaries	are	also	much	easier	to	maintain
over	time.

With	IPv6,	host	address	conservation	(and	whatever	limited	form	of	efficiency	it	provided)
is	effectively	obsolete.	We	can	now	optimize	our	design	choices	for	the	superior
efficiencies	of	network	scale	and	operational	ease.



Nibble	Boundaries
A	nibble	is	4	bits.	Since	IPv6	addresses	are	expressed	using	hexadecimal	characters,
subnetting	exclusively	in	multiples	of	four	bits	has	several	important	benefits	for	address
planning	(and	operations).

The	first	and	most	obvious	of	these	is	that	our	CIDR	notation	for	any	prefix	will	always	be
a	multiple	of	four.	For	example,	starting	from	a	/64	(as	that’s	the	smallest	typical	subnet
size):

/64,	/60,	/56,	/52,	/48,	/44,	etc.

From	an	operational	standpoint,	this	makes	any	subnetting	transcription	errors	in
configuration	or	documentation	immediately	apparent.	For	example:

/53,	/47,	/39,	etc.

The	next	benefit	is	that	we	have	a	smaller	possible	set	of	subnet	groups	to	account	for,	as
shown	in	Table	4-1:.

Table	4-1.	Binary	nibbles

n 24n

1 16

2 256

3 4096

4 65536

5 1048576

6 16777216

7 268435456

8 4294967296

As	we	get	into	our	address	plan	design	based	on	our	network	topology,	it’s	uncommon	that
we’ll	have	any	network	entities	(VLANs,	buildings,	business	units,	etc.)	in	groups	larger
than	65536.

Also,	much	of	our	address	planning	will	be	focused	on	either	the	16	bits	of	the	individual
site	subnet	ID	(from	/48	to	/64)	or	the	16	bits	of	the	overall	organizational	assignment
(typically	from	/32	to	/48,	though	possibly	larger	for	the	largest	enterprises).	As	a	result,
the	first	four	values	(i.e.,	16,	256,	4096,	and	65536)	are	the	most	often	used	and	thus	most
usefully	remembered.

The	final	benefit	takes	a	bit	more	explaining.



Prefix	Legibility
The	final	benefit	of	adhering	to	the	nibble	boundary	when	subnetting	in	IPv6	is	improved
prefix	legibility	(or,	to	put	it	another	way,	human-readability).

What	do	we	mean	by	legibility?	Let’s	demonstrate	with	an	example.	Say	we’ve	been
assigned	a	/48	for	the	headquarters	site	of	a	large	enterprise.	(We’ll	explain	in	detail	why
we	might	get	such	an	assignment	in	Chapter	5.)

The	site	has	20	buildings,	and	we’ve	designed	our	plan	to	allocate	one	subnet	per	building.
(We’ve	been	told	to	anticipate	very	little	growth	as	the	company	is	planning	on	moving
the	HQ	sometime	in	the	next	two	to	five	years.)	We’ll	set	aside	an	additional	subnet	for
infrastructure	between	buildings	for	a	total	of	21	subnets.

The	minimum	number	of	bits	we’d	need	to	use	to	support	21	subnets	would	be	5,	which
gives	us	a	total	of	32	subnets.	We’ve	got	11	subnets	to	spare	in	case	any	need	arises	to
assign	additional	ones.	The	Ns	represent	these	5	bits	below,	while	the	Xs	are	unspecified:

2001:db8:abcd:[NNNNNXXXXXXXXXXX]::/53

Note	that	while	this	provides	sufficient	subnets,	the	resulting	prefixes	aren’t	as
immediately	legible	because	the	bit	boundary	doesn’t	align	with	the	4	bits	used	to	define
the	hexadecimal	character	in	the	address:

2001:db8:abcd:0000::/53

2001:db8:abcd:0800::/53

2001:db8:abcd:1000::/53

2001:db8:abcd:1800::/53…

Continuing	with	our	example,	the	abundance	of	addresses	available	in	IPv6	allows	us	to
use	8	bits	(instead	of	only	5),	which	makes	the	hexadecimal	representation	of	the	resulting
subnets	much	tidier:

2001:db8:abcd:000::/56

2001:db8:abcd:100::/56

2001:db8:abcd:200::/56

2001:db8:abcd:300::/56…

For	each	subnet	group,	only	one	value	is	possible	for	the	hexadecimal	character	that
corresponds	to	the	4-bit	boundary	in	the	IPv6	prefix	(in	this	case,	a	/56).	This	makes	the
resulting	prefix	more	immediately	readable.

Obviously,	the	use	of	more	bits	gives	us	more	subnets:	256	in	this	case,	21	of	which	we’ll
use	immediately	along	with	235	for	future	use.	But	fewer	host	ID	bits	also	reduces	the
number	of	available	/64	subnets	in	each	parent	subnet.	In	our	above	example,	we	went
from	2048	/64s	available	per	/53	to	256	/64s	available	with	a	/56.



Visualizing	Hierarchy
As	mentioned	in	the	last	section,	much	of	our	address	planning	will	be	focused	on	either
the	16	bits	of	the	individual	site	subnet	ID	(from	/48	to	/64)	or	the	16	bits	of	the	overall
organizational	assignment	(typically	from	/32	to	/48).

As	it	turns	out,	dividing	either	of	these	16-bit	groups	along	their	nibble	boundaries	gives
us	a	very	simple	way	of	visualizing	the	hierarchy	available	to	us	when	defining	our
addressing	plan.	We’ll	pick	the	typical	subnet	ID	range	to	demonstrate,	i.e.,	/48	to	/64
(Figure	4-1).

Figure	4-1.	IPv6	site	prefix	visualization

To	create	an	IPv6	subnetting	hierarchy	from	a	/48	using	the	above	diagram,	simply	choose
one	of	the	four	boxes	and	then	a	single	path	in	that	box	from	left	to	right.

The	first	box	gives	us	four	unique	possibilities,	as	shown	in	Figure	4-2:

Figure	4-2.	IPv6	site	prefix	visualization	(detail	1)

Box	two	provides	two	possible	paths	(Figure	4-3):



Figure	4-3.	IPv6	site	prefix	visualization	(detail	2)

One	path	each	is	provided	by	the	third	and	fourth	boxes	(Figure	4-4):

Figure	4-4.	IPv6	site	prefix	visualization	(detail	3)

Adding	the	possibilities	up,	we	end	up	with	only	eight	paths	to	choose	from.

As	it	happens,	this	simple	expression	of	subnetting	hierarchy	will	often	prove	more	than
adequate	to	guide	a	basic	topology	for	many	organizations.	It	strikes	a	good	balance
between	the	minimum	amount	of	complexity	required	to	instantiate	operational	efficiency
and	the	simplicity	to	make	and	keep	the	plan	extensible	and	flexible.

Let’s	take	a	look	at	the	same	figure	with	actual	subnets	added	for	clarity	(Figure	4-5):

Figure	4-5.	IPv6	site	prefix	visualization	with	subnets

In	this	figure,	the	range	of	possible	values	to	enumerate	the	subnets	available	at	that	level
of	hierarchy	is	bracketed.	For	example,	starting	in	the	upper	left-hand	corner	and	moving
to	the	right,	we	observe	that	the	16	/52s	at	that	level	will	be	enumerated	by	modifying	the
first	character	of	the	fourth	hextet:

2001:db8:1::/52	(or,	expanded	for	clarity,	2001:db8:1:0000::/52)



2001:db8:1:1000::/52

2001:db8:1:2000::/52…

2001:db8:1:F000::/52

From	there,	each	of	our	/52s	could	be	further	subnetted	along	one	of	three	different	paths.

The	first	path	gives	us	16	/56s	enumerated	by	the	second	character	(and	next	4	bits)	of	the
fourth	hextet.	Choosing	the	first	/52	from	the	step	above,	we	get	the	first	group	of	16	/56
subnets:

2001:db8:1::/56

2001:db8:1:0100::/56

2001:db8:1:0200::/56…

2001:db8:1:0F00::/56

The	second	group	of	16	/56	subnets	would	be:
2001:db8:1:1000::/56

2001:db8:1:1100::/56

2001:db8:1:1200::/56…

2001:db8:1:1F00::/56

The	second	path	gives	us	256	/60s	enumerated	by	the	second	and	third	character	(and	8
middle	bits)	of	the	fourth	hextet.	Again	choosing	the	first	/52	subnet	from	our	first
example,	we	get	the	first	group	of	256	/60	subnets:

2001:db8:1::/60

2001:db8:1:0100::/60

2001:db8:1:0200::/60…

2001:db8:1:0FF0::/60

The	second	group	of	256	/60	subnets	would	be:
2001:db8:1:1000::/60

2001:db8:1:1100::/60

2001:db8:1:1200::/60…

2001:db8:1:1FF0::/60

The	final	path	gives	us	4096	/64s	enumerated	by	the	second,	third,	and	fourth	characters
(and	right-most	12	bits)	of	the	fourth	hextet.	Once	more,	starting	with	the	first	/52	subnet,
we	get	the	first	group	of	4096	/64	subnets:

2001:db8:1::/64

2001:db8:1:0100::/64

2001:db8:1:0200::/64…

2001:db8:1:0FFF::/64

The	second	group	of	4096	/64	subnets	would	be:
2001:db8:1:1000::/64

2001:db8:1:1100::/64

2001:db8:1:1200::/64…

2001:db8:1:1FFF::/64

Hopefully,	these	images	(and	the	method	associated	with	them)	give	you	a	better	sense	of
how	to	visualize	and	enumerate	the	subnets	and	hierarchy	options	available	to	you	for	a
site.	With	a	few	uses,	you’ll	quickly	be	able	to	mentally	map	out	your	options.[72]



Non-Nibble	Subnetting
As	we	discussed,	we’ll	want	to	use	nibble	boundary	subnetting	whenever	possible.	Recall
that	if	we	stick	to	the	nibble	boundary	when	subnetting	a	site	prefix	with	16	bits,	we
always	get	16,	256,	4096,	or	65536	prefixes.	Also,	enumeration	is	simple,	as	each
hexadecimal	character	represents	a	nibble	and	prefixes	will	never	“divide”	a	hex	character.

However,	there	may	be	instances	that	arise	where	we’ll	need	to	use	the	non-nibble	“in-
between”	bits	to	provide	sufficient	subnets	for	our	site	address	plan.

Here’s	a	method	for	IPv6	subnetting	using	any	number	of	bits	in	the	subnet	ID.	This	will
allow	you	to	calculate	and	enumerate	groups	of	prefixes	other	than	the	ones	adhering	to
nibble	boundaries,	i.e.,	16,	256,	4096,	65536,	etc.[73]

Let’s	walk	through	this	method	with	an	example	allocation.	Say	we’ve	received
2001:db8:abba::/48	to	number	a	campus	LAN.

With	a	little	planning,	we’ve	determined	that	we’re	going	to	need	at	least	16	subnets	for
each	building.	So	this	first	group	of	prefixes	will	not	require	our	method	because	we
simply	adhere	to	the	4	bits	of	the	first	nibble	boundary.

This	gives	us	16	prefixes	enumerated	by	the	first	character	of	our	fourth	hextet:
2001:db8:abba::/52

2001:db8:abba:1000::/52

2001:db8:abba:2000::/52…

2001:db8:abba:f000::/52

Now,	let’s	say	for	the	sake	of	illustration	that	our	typical	campus	building	uses	20	VLANs.
Since	allocating	4	more	bits	to	take	us	to	the	next	nibble	boundary	only	yields	16
additional	prefixes,	we’ll	need	more	than	4	bits.	By	standard	IPv6	address	planning
principles,	we	should	be	entirely	comfortable	simply	allocating	an	additional	4	bits	for	a
total	of	8	bits.	This	would	give	us	256	additional	prefixes	(with	4	bits	remaining	for	16
/64s	per	prefix).	But	to	demonstrate	our	method,	let’s	get	more	granular	and	only	use	as
many	bits	as	gives	us	sufficient	prefixes	for	the	number	of	elements	in	this	level	of	our
design	(i.e.,	20	VLANs).	Since	the	least	number	of	bits	that	produces	an	integer	value
greater	than	20	is	5	(25	=	32),	we’ll	use	5	bits	to	subnet	our	/52	prefix.

First,	where	p	=	prefix	length	of	the	parent	subnet	and	a	=	number	of	fixed	bits	in	the
subnet	ID:

a	=	p	-	48

From	our	example:

a	=	52	-	48	=	4

a	=	4

So	we	have	4	bits	that	are	fixed	(which	we	already	knew,	but	the	value	is	used	in	later
formulae).

Next,	where	s	=	subnets	created	and	b	=	bits	used	to	subnet

s	=	2b



s	=	25	=	32

s	=	32

As	we	outlined	above,	we’ll	create	32	subnets	using	5	bits.

Next,	where	i	=	the	(decimal)	increment	value	between	the	created	subnets	(which	we
must	convert	back	to	hexadecimal):

i	=	216-(a+b)

i	=	216-(4+5)	=	216-9	=	27	=	128

i	=	128

Converted	to	hexadecimal:

i	=	0x80

Next,	where	p1	=	the	prefix	length	of	the	created	subnets:

p1	=	48	+	a	+	b

p1	=	48	+	4	+	5	=	57

So	now	that	we	know	the	increment	and	prefix	length	value,	we	can	enumerate	the	new
subnets:

2001:db8:abba::/57

2001:db8:abba:80::/57

2001:db8:abba:100::/57

2001:db8:abba:180::/57…

2001:db8:abba:f80::/57

Et	voilà:	Our	32	new	subnets.

We	could,	of	course,	subnet	each	of	these	/57s	further	in	order	to	provide	additional
hierarchy	for	other	organizational	or	operational	requirements.

But	assuming	we	don’t,	how	many	/64	interface	subnets	would	each	of	these	/57s	provide?

Finally,	where	n	=	number	of	/64	subnets	provided	by	each	new	subnet:

n	=	2(64-p1)

n	=	2(64-57)	=	27	=	128

So	each	/57	will	provide	us	with	128	/64	interface	subnets.

With	a	little	practice,	you’ll	be	able	to	dispense	with	the	formulae	and	do	this	in	your
head.



A	Bit	to	the	Left,	a	Bit	to	the	Right
There	are	many	bit-allocation	methods	to	help	take	advantage	of	the	tremendous
subnetting	flexibility	in	IPv6.	It’s	a	Good	Thing™,	too,	because	there	are	many	sizes	of
networks	with	many	different	business	requirements.	And,	of	course,	networks	are
constantly	growing,	shrinking,	adding	new	applications	and	services,	etc.	As	a	result,	it’s
sometimes	difficult	to	know	in	advance	what	size	allocations	will	be	ideal	for	an	existing
or	planned	set	of	networks.	(We’ll	review	IPv6	address	allocation	methods	in	the	next
chapter.)

Let’s	look	at	three	ways	we	could	assign	bits	in	an	allocation	to	create	subnets.	We’ll	start
with	a	sample	allocation:

2001:db8:aa00::/40

The	same	allocation	expressed	in	binary:
00100000	00000001	00001101	10111000	10101010	00000000

For	illustration	purposes,	we’ll	focus	on	the	next	8	bits	available	to	us	(from	/41	to	/48).
Keep	in	mind	that	the	maximum	number	of	subnets	with	8	bits	is	256.

Subnets	from	the	Right-Most	Bits
The	first	method	would	be	to	begin	with	and	increment	the	right-most	available	bits
(Table	4-2):

Table	4-2.	Subnets	from	Right-Most	Bits

Name Binary Hex

Subnet1 00000000 2001:db8:aa00::/48

Subnet2 00000001 2001:db8:aa01::/48

Subnet3 00000010 2001:db8:aa02::/48

Subnet4 00000011 2001:db8:aa03::/48

… … …

Subnet256 11111111 2001:db8:aaff::/48

This	method	has	some	advantages.	It’s	certainly	the	simplest	of	the	allocation	methods.	A
major	disadvantage,	however,	is	that	if	an	allocation	turns	out	to	be	too	small	to
accommodate	growth,	there	is	no	easy	way	to	increase	its	size	contiguously.[74]

Subnets	from	the	Left-Most	Bits
The	second	method	starts	from	the	left-most	available	bits	and	assigns	them	from	left	to
right	(Table	4-3).



Table	4-3.	Subnets	from	Left-Most	Bits

Name Binary Hex

Subnet1 00000000 2001:0db8:aa00::/48

Subnet2 10000000 2001:0db8:aa80::/48

Subnet3 01000000 2001:0db8:aa40::/48

Subnet4 11000000 2001:0db8:aac0::/48

Subnet5 00100000 2001:0db8:aa20::/48

… … …

Subnet256 11111111 2001:0db8:aaff::/48

It’s	hard	to	perfectly	visualize,	but	it’s	pretty	obvious	that	early	in	our	list	there	is	plenty	of
space	between	subnets.	(Although	as	we	assign	bits	from	left	to	right,	we	would
eventually	account	for	every	possible	subnet	and	fill	in	the	space	between	the	prefixes	at
the	start	of	our	list.)

The	disadvantage	here	is	that	since	we’ve	started	with	the	left-most	bits,	we’re	right	at	the
edge	of	our	allocation.	We	can	always	create	smaller	subnets,	but	there’s	no	way	to	create
any	larger	subnets,	contiguous	or	otherwise.

Can	you	guess	where	the	third	method	begins?	That’s	right!	With	the	middle	bits!

Subnets	from	the	Middle	Bits
The	algorithm	for	assigning	bits	for	this	method	is	a	little	more	complex.[75]

If	we	have	an	odd	number	of	bits,	we	start	with	the	middle	one:

000000000

If	we	have	an	even	number	of	bits	(as	we	do	in	our	example),	we	divide	them	in	half	and
choose	the	left-most	bit	of	the	second	half:

00000000

Next,	we	count	up	through	the	available	bits	in	our	set.	Since	we’ve	only	selected	one	bit
so	far,	there	are	only	two	possibilities:

00000000	00001000

In	our	example,	these	would	correspond	to	the	following	subnets:
2001:db8:aa00::/48

2001:db8:aa08::/48

We	now	say	that	we’ve	completed	the	first	round	of	bit	selection	and	subnetting.

Each	subsequent	round	will	add	an	additional	bit	to	the	previous	round’s	set	of	bits.	If
we’re	in	an	even-numbered	round,	we	add	the	first	available	bit	to	the	left	of	our	previous



set.	If	we’re	in	an	odd-numbered	round,	we	add	the	first	available	bit	to	the	right	of	the
previous	round’s	bit	set.	Then	we	count	up	through	all	the	available	bits	in	that	set.	Rinse.
Repeat.	(See	Figure	4-6.)



Figure	4-6.	RFC	3531	middle	bits	method

The	power	of	this	method	is	two-fold.



By	leaving	unused	bits	to	the	left,	we’re	effectively	leaving	space	between	subnets.	By
numbering	into	these	bits,	we	can	arbitrarily	increase	the	size	of	a	previous	allocation.

By	leaving	unused	bits	to	the	right,	we	can	create	smaller	subnets	as	needed.

Perhaps	we	could	refer	to	this	as	tentative	allocation.	If	all	or	part	of	our	network	is	very
dynamic,	we	might	reasonably	infer	that	we’ll	have	to	modify	our	allocation	scheme	to
accommodate	any	change	and	growth.	This	method	gives	us	a	way	to	do	it	more	easily.

Since	this	method	is	a	bit	more	involved,	there	are	multiple	tools	available	to	help	manage
it	(including	ipv6gen,	detailed	below).



Using	Only	Numeric	Subnets
We’ve	seen	how	subnetting	from	the	left-most	or	middle	bits	can	leave	ample	space
between	subnets	for	future	use.	Another	way	to	preserve	space	in	a	group	is	to	select	those
subnets	containing	only	numbers	(and	no	hexadecimal	characters).

For	example:
2001:db8:abba:0[0-9][0-9]0::/56

Enumerating	the	numbers-only	subnets	would	give	us	blocks	of	/60s,	according	to	the
following	pattern:

2001:db8:abba::/60

2001:db8:abba:0010:/60

2001:db8:abba:0020:/60…

2001:db8:abba:0090:/60

Here	are	the	subnets	containing	hexadecimal	characters	from	the	same	range:
2001:db8:abba:00a0:/60

2001:db8:abba:00b0:/60

2001:db8:abba:00c0:/60…

2001:db8:abba:00f0:/60

Out	of	the	256	total	subnets	available,	100	numeral-only	subnets	would	be	used.	This
method	leaves	61%	of	any	group	of	subnets	in	reserve	for	future	use.	(It’s	also	helpful
operationally	because	production	subnets	are	immediately	identifiable	by	the	absence	of
hexadecimal	characters	in	a	given	group.)



ipv6gen
ipv6gen	is	a	very	handy	open-source,	Perl-based	tool	for	generating	and	enumerating
subnets	from	a	larger	prefix.

You	enter	the	prefix	you	want	to	subnet,	as	well	as	the	size	of	the	prefixes	you	want	to
generate	(Figure	4-7).

It’s	especially	useful	for	accurately	enumerating	prefixes	when	subnetting	away	from	the
nibble	boundary	(Figure	4-8).

With	no	argument,	ipv6gen	allocates	from	the	right-most	bits	of	the	entered	prefix.	But	the
tool	also	lets	you	allocate	from	the	left-most	bits,	which	is	a	useful	approach	if	you	think
you	might	need	to	create	additional	contiguous	subnets	in	the	future	(Figure	4-9).

Figure	4-7.	ipv6gen,	example	1

http://bit.ly/ipv6gen


Figure	4-8.	ipv6gen,	example	2

Figure	4-9.	ipv6gen,	example	3

Finally,	you	can	allocate	from	the	middle	bits,	allowing	contiguous	subnetting	for	both
larger	and	smaller	prefixes	(shown	here	with	the	debug	flag	set	in	Figure	4-10).

ipv6gen	also	has	a	sparse	allocation	function	that	skips	the	enumeration	of	intervening
prefixes.	Here’s	the	example	from	Figure	4-7	using	the	“step	between	prefixes”	argument
set	to	4	(Figure	4-11).

For	each	prefix,	the	three	prefixes	that	would	have	followed	are	dropped.	These	prefixes
could	be	held	in	reserve	and	allowed	for	future	assignment	and	aggregation	(in	this
example,	to	a	/46).



Figure	4-10.	ipv6gen,	example	4	(output	truncated)

Figure	4-11.	ipv6gen,	example	5



[68]	Recall	that	the	first	and	last	addresses	of	any	subnet	(in	this	case	.0	and	.255)	are	reserved	for	the	network	and
broadcast	addresses	respectively.

[69]	Sorry,	no	compound	interest.

[70]	Notice	that	this	approach	leaves	aggregation	to	facilitate	routing	and	security	policy	as	an	afterthought.

[71]	Recall	that	data	plane	performance	is	enhanced	by	pushing	routing	information	down	to	an	individual	port’s	FIB
(forwarding	information	base).	Each	port	has	a	limited	amount	of	ternary	content	addressable	memory	(TCAM)	to	store
its	FIB.	As	a	result,	per-port	costs	are	dependent	on	the	amount	of	TCAM	needed,	which	proper	prefix	aggregation	can
help	reduce.

[72]	As	mentioned,	this	approach	will	work	just	as	well	for	the	16	bits	between	a	/32	and	a	/48	(thus,	for	any	address
planning	necessary	between	sites).

[73]	This	method	is	derived	in	part	from	the	one	presented	in	Joseph	Davies’	excellent	book	Understanding	IPv6:	Your
Essential	Guide	to	IPv6	on	Windows.

[74]	You	may	notice,	however,	that	when	using	this	method,	by	simply	skipping	some	fixed	number	of	subnets	in
between	allocations,	you’ll	automatically	leave	subnets	in	reserve	for	future	contiguous	assignments.	For	example,	start
at	2001:db8:aa01::/48	and	allocate	every	other	prefix:	2001:db8:aa03::/48,	2001:db8:aa05::/48,	etc.	That	would	leave	in
reserve	2001:db8:aa00::/48,	2001:db8:aa02::/48,	2001:db8:aa04::/48,	etc.	The	CLI	tool	ipv6gen,	which	is	used	for
automatically	generating	IPv6	subnets,	offers	this	capability.	We’ll	examine	this,	as	well	as	other	features	of	ipv6gen,	in
more	detail	at	the	end	of	this	chapter.

[75]	RFC	3531,	A	Flexible	Method	for	Managing	the	Assignment	of	Bits	of	an	IPv6	Address	Block.

http://bit.ly/rfc-3531




Chapter	5.	IPv6	Address	Planning
Concepts

Practice	safe	design:	use	a	concept.

—	Petrula	Vrontikis



Introduction
It’s	been	said	that	design	is	where	science	and	art	break	even.	In	this	chapter,	we’ll	focus
primarily	on	the	science	part	of	IPv6	address	planning	and	be	as	thorough	as	we	can	be
with	the	design	concepts	and	principles	that	you’ll	need	to	be	familiar	with	to	tackle	your
plan.	As	we	proceed,	however,	we’ll	be	sure	to	consider	the	art	of	address	plan	design	as
well,	an	art	based	on	accumulated	operational	knowledge	and	practical	experience	and	the
best-practices	that	have	evolved	from	it.



IPv6	Address	Planning	Principles
We’ve	already	mentioned	earlier	that	IPv6	address	planning	should	not	be	based	on	(e.g.,
sufficient	host	addressing).

But	given	that,	what	should	it	be	based	on	(and	why)?	Let’s	examine	the	fundamental	IPv6
address	planning	principles	in	brief	before	looking	at	each	more	closely.	They	are:

Properly	sized	initial	allocations

This	is	arguably	the	most	critical	of	all	the	address	planning	principles	we’ll	discuss.
The	reason	is	that	all	of	the	principles	that	follow	are	more	or	less	dependent	on	getting
a	sufficiently	large	allocation	at	the	start.

Sparse	assignment	of	subnets

With	a	sufficiently	sized	allocation,	we’ll	be	able	to	assign	subnets	sparsely,	i.e.,	leave
unused	space	between	our	assigned	subnets	adequate	for	future	growth	or	network
reconfiguration.

Hierarchical	organization	of	subnets

A	sufficiently	sized	allocation	also	allows	for	the	organization	of	subnets	into
hierarchies	or	levels	that	follow	one	or	more	organizational	attributes	of	the	network	or
enterprise:	geographical	location,	organizational	role,	security	classification,	etc.

Adherence	to	nibble	boundaries

Where	practical,	assigning	subnets	based	on	4-bit	boundaries	provides	for	the
operational	benefit	of	increased	legibility	(i.e.,	human-readability)	for	IPv6	subnets.

Uniform	subnetting	and	summarization

Equal-sized	subnets	(or	groups	of	subnets)	help	simplify	the	overall	address	plan.
They’re	easier	to	assign,	administer,	and	track.	They’re	also	easier	to	summarize,
potentially	providing	for	smaller	routing	tables	and	tidier	ACLs.

Let’s	look	at	each	of	these	principles	in	more	detail.

Properly-Sized	Initial	IPv6	Allocations
It	seems	to	be	an	all-too-common	occurence	for	enterprises	to	end	up	with	an	IPv6
allocation	that’s	too	small.	A	typical	example	of	this	is	an	enterprise	that	has	multiple
networks	in	multiple	locations	but	receives	only	a	single	/48.	Such	scenarios	often	occur
because	enterprise	network	or	IT	personnel	have	gotten	conflicting,	insufficient,	or	out-of-
date	information	on	how	much	IPv6	space	they	need,	so	they	end	up	asking	for	too	little.
The	absolute	enormous	scale	of	a	/48	can	trigger	an	analysis	that	is	misinformed	by	IPv4
thinking:	“We’ve	got	1,208,925,819,614,629,174,706,176	IPv6	addresses	to	use.	Let’s
see…(does	calculation)…that’s	281	trillion	Internets!	But…we	don’t	want	to	eventually
be	in	the	same	boat	as	we	are	with	IPv4	exhaustion.	Better	play	it	safe	and	figure	out	how
to	best	carve	up	our	one	/48.	After	all,	it’s	more	than	enough	host	addresses.”[76]

So	now	that	we	know	we’re	going	to	need	a	properly-sized	initial	IPv6	allocation,	what’s
the	proper	size?	Naturally,	organizations	come	in	many	sizes	and	have	differing	missions.



Though	there	are	some	common	allocation	sizes	by	organization	type	(as	depicted	in
Chapter	3),	there	typically	isn’t	a	one-size-fits-all	allocation.	So	our	more	general
definition	of	a	proper-sized	IPv6	allocation	is	one	that	allows	for	the	realization	of	all	the
other	IPv6	address	planning	principles.	Such	principles	will	help	ensure	more	specific
operational	benefits	like	prefix	legibility	(or	human-readability),	better	route	aggregation,
more	manageable	ACLs,	and	more	accurate	tracking	of	IPv6	prefix	assignments.	The	goal
is	to	futureproof	the	address	plan	and	keep	it	operationally	viable	through	the	growth	and
change	that	inevitably	occurs	in	any	network.

Of	course,	attempting	to	accurately	determine	how	much	IPv6	space	will	be	needed	before
you’ve	completed	at	least	an	initial	version	of	an	address	plan	means	that	you	may	need	to
make	some	educated	inferences	(aka,	guesses).	Meanwhile,	creating	an	IPv6	address	plan
relies	on	knowing	how	much	space	you	have	to	work	with.	As	a	result,	it	may	be	helpful
to	tackle	this	sizing	conundrum	in	a	couple	of	stages:

1.	 By	making	an	initial,	approximate	estimate	based	on	the	relative	size	of	the
organization	(generally,	with	regard	to	the	number	of	sites	as	uniquely	defined	in
IPv6	terms).

2.	 Reassessing	the	estimated	allocation	size	after	a	detailed	plan	based	on	solid	IPv6
address	planning	principles	and	best-practices	has	been	constructed.

For	the	first	stage,	allocations	range	in	size	from	a	/48	at	the	smallest	end	(usually	for	a
single	site)	all	the	way	to	a	/16,	depending	on	the	size	of	the	requesting	organization.
While	there	could	always	be	exceptions,	ISPs	are	more	likely	to	receive	larger	allocations,
between	a	/16	and	/32,	while	enterprises	are	often	allocated	between	a	/48	and	/32	of	IPv6
space	(Figure	5-1).

Figure	5-1.	Allocation	size	according	to	type	of	organization

We’ll	cover	RIR	and	ISP	requirements	for	justifying	IPv6	allocations	in	Chapter	6,	but
planning	on	assigning	at	least	a	/48	per	site	is	a	good	rule	of	thumb	for	estimating	the
necessary	size	of	your	IPv6	allocation.[77]

Also,	for	those	that	have	already	received	an	allocation	from	a	RIR	or	ISP:	as	you	create
or	revise	your	first	plan,	you	may	come	to	realize	or	believe	that	your	allocation	is
insufficient.	We’ll	cover	what	to	do	in	that	scenario	in	the	next	chapter.

Sparse	Assignment	of	Subnets
The	next	principle	of	IPv6	address	planning	is	sparse	assignment	of	subnets.	We	saw	a
few	of	the	methods	for	creating	subnets	that	allow	for	sparse	allocation	in	the	previous
chapter,	such	as	subnetting	from	either	the	left-most	or	middle	bits,	either	of	which	leaves
additional	bits	to	create	additional	contiguous	subnets	in	the	future.

Hierarchical	Organization	of	Subnets



By	grouping	subnets	into	hierarchies	(or	more	simply	put,	levels),	the	addressing	plan	can
more	closely	track	the	organization	of	the	network:	e.g.,	its	physical	topology,	its	security
policies,	or	any	other	attributes	that	might	make	sense	to	map	into	the	address	plan.	Each
level	of	the	hierarchy	should	be	easy	to	aggregate	into	the	next	level.	It	follows	then	that
when	creating	a	new	level	below	an	existing	one,	subnets	should	be	equally	sized	to
continue	to	allow	for	aggregation.	This	recommendation	is	our	next	principle.

Uniform	Subnetting	and	Summarization
Anytime	new	subnets	are	defined	for	a	hierarchy	level	within	an	addressing	plan,	every
effort	should	be	made	to	make	sure	that	they	are	uniform	in	size.	This	requirement	makes
sense	when	considered	in	the	context	of	the	previous	principle:	hierarchy	is	easier	to
establish	and	maintain	when	using	subnets	of	equal	size.	This	principle	also	makes	for
more	efficient	network	operations	(and	IP	address	management)	when	equal-sized	subnets
are	assigned	to	particular	locations	or	functions	in	the	network.	Finally,	uniform	subnet
sizes	can	help	simplify	security	policies	and	any	resulting	ACL	entries	(reducing	the	risk
of	configuration	errors).[78]

Subnets	in	Reserve
Getting	a	big	enough	block	of	IPv6	addresses	from	an	RIR	or	ISP	at	the	outset	(as	well	as
using	techniques	like	sparse	allocation)	should	help	automatically	preserve	blocks	of
subnets	sufficient	for	future	use.	That	said,	the	principle	of	holding	subnets	in	reserve
should	be	kept	in	mind	as	you	develop	and	iterate	your	address	plan.	Having	enough
subnets	in	reserve	at	each	layer	of	hierarchy	will	help	ensure	the	future	flexibility	and
scalability	of	the	plan.

As	the	network	grows	or	changes,	the	ability	to	maintain	the	above	principles	is	evidence
of	a	successful	addressing	plan.



Why	Don’t	I	Use	My	Existing	IPv4	Plan	in	IPv6?
When	getting	started	with	IPv6	address	planning,	we	might	be	tempted	to	use	an	existing
IPv4	address	plan	as	a	guide	or	framework.	The	reasons	for	this	impulse	are	perfectly
understandable.	For	instance,	without	the	foundation	in	IPv6	address	planning	concepts
and	methods	this	book	seeks	to	provide,	an	architect	can	lack	the	proper	organizing
principles	with	which	to	build	a	proper	address	plan	in	IPv6.	An	existing	IPv4	plan
provides	at	least	some	structure	(and	the	concepts	and	methods	that	gave	rise	to	it)	and
seems	to	offer	a	manageable	entry	point	into	a	new	planning	effort.	It’s	also	already
familiar	to	network	administrators.

But	there	are	multiple	reasons	why	this	is	the	wrong	approach.

We’ve	already	discussed	some	of	the	common	methods	resulting	from	IPv4	thinking.
Attempting	to	somehow	correlate	our	new	IPv6	plan	with	our	existing	IPv4	one	may	lead
to	improper	subnetting	and	summarization.

For	example,	because	IPv4	allocations	are	often	necessarily	limited	in	size,	it’s	much	more
common	to	allocate	adjacent	subnets.	But	IPv6	allocations	are	obviously	much	larger,	and
as	a	result,	allocating	subnets	along	boundaries	separated	by	a	nibble	is	the	technique
preferred	in	IPv6	address	planning.	This	sparse	allocation	method	leaves	intervening	bits
to	number	into	later,	a	luxury	not	afforded	to	us	by	the	limited	bits	available	in	IPv4.

Another	reason	too	much	thoughtless	deference	to	our	existing	IPv4	address	plan	can	be	a
bad	idea	is	that,	unless	we’re	doing	a	lot	of	translation	between	IPv4	and	IPv6,	our
preferred	IPv6	deployment	method	will	be	dual-stack.	Since	the	IPv4	and	IPv6	networks
are	logically	separate	in	such	an	environment,	we	have	the	freedom	to	develop	a	new	and
unique	address	plan	for	IPv6.	The	potential	benefits	of	this	green-field	opportunity	cannot
be	overstated	(and	are	partly	the	reason	this	book	exists).

A	final	trap	that	an	existing	plan	can	lay	for	us	is	the	impulse	to	map	IPv4	addresses	into
IPv6	addresses	for	an	attempt	at	operational	consistency	(with	the	hopes	that	it	will	lead	to
increased	operational	efficiency).	Some	or	all	of	the	IPv4	octets	could	be	encoded	into	the
hexadecimal	characters	of	the	IPv6	address.

For	instance,	here’s	the	IPv4	host	address	192.0.2.234	mapped	into	the	last	eight	nibbles
of	the	IPv6	subnet	2001:db8:777::

2001:db8:777::c000:02ea

You’ll	notice	that	we	immediately	sacrifice	the	more	familiar	decimal	representation	of	the
IPv4	address	(along	with	whatever	operational	benefit	it	might	have	otherwise	provided).
An	alternative	would	be	not	to	convert	the	decimal	characters	to	hexadecimal,	but	just
represent	them	using	the	numbers	characters	of	hexadecimal:

2001:db8:777::192:0:2:234

While	this	method	forgoes	any	of	the	benefits	of	auto-addressing	via	SLAAC	or	DHCPv6
(and	the	tighter	host	control,	DNS,	and	IPAM	potentially	available	when	using	it),	it	might
be	useful	in	limited	instances	where	static	addressing	is	usually	used,	such	as	specific,
well-known	servers.[79]

Finally,	no	matter	what	might	be	perceived	as	the	immediate	operational	ease	or	benefit	of



mapping	our	IPv6	address	plan	into	our	existing	IPv4	one,	keep	in	mind	that	IPv4	is
headed	toward	legacy	protocol	status:	at	some	point,	organizations	will	be	removing	IPv4
from	the	network.	Whatever	interim	operational	benefit	was	missed	out	on	by	commiting
to	IPv4	address	plan	logic	at	the	outset,	add	to	that	the	complexity	and	expense	of	revising
or	redoing	the	IPv6	address	plan	according	to	the	established	and	new	best	practices.



Address	Plan	Structure
TIP

At	its	most	basic,	the	IPv6	addressing	plan	method	is	defining	and	assigning	blocks	of	subnets	based	on	the	structure
of	the	network	or	the	organization.

We’ll	look	at	some	general	best-practice	IPv6	address	planning	principles	a	little	later	in
the	chapter.	But	first,	let’s	look	at	an	example	of	the	basic	address	plan	structure
(Figure	5-2).

In	this	example,	the	level	0	represents	an	organization’s	primary	IPv6	allocation	from	the
ISP	or	RIR.	Level	1	represents	blocks	of	subnets	defined	and	assigned	to	some	network	or
attribute	within	the	organization.	Level	2	represents	the	smallest	assignable	subnet	(in
most	cases	a	/64).

More	specifically,	the	example	above	might	correspond	to	a	/48	being	carved	into	256
/56s,	each	yielding	256	/64s	(or,	alternatively,	a	/32	being	carved	into	256	/40s,	each	with
256	/48s).	Figure	5-3	shows	another	example	with	an	additional	level	added.

As	before,	level	0	represents	an	organization’s	primary	IPv6	allocation	from	the	ISP	or
RIR.	Level	1	represents	blocks	of	subnets	defined	and	assigned	to	some	network	or
attribute	within	the	organization.	Level	2	would	be	the	next	block	of	assigned	subnets
within	each	level	1	subnet.	Level	3	would	likely	be	the	smallest	assignable	subnet	(again,
with	each	instance	of	level	3	fitting	into	each	level	2	subnet).



Figure	5-2.	Basic	address	plan	structure

As	we’ll	see	in	the	addressing	plan	example	in	Chapter	7,	most	organizations	have	fewer
than	256	attributes	requiring	subnet	blocks.	They	also	typically	have	subattributes
requiring	additional	levels.	As	a	result,	most	address	plans	end	up	with	many	unused
subnets	in	each	block	(Figure	5-4).[80]

When	we	talk	about	blocks	of	subnets	defined	and	assigned	to	a	level,	each	level	typically
corresponds	to	some	well-defined	network	or	organizational	attribute,	and	the	most
significant	of	these	(and	typically	the	first	to	be	defined)	is	the	site.



Figure	5-3.	Basic	address	plan	structure

Figure	5-4.	Address	plan	structure	with	reserved	(unused)	subnets



What	Is	a	Site?
We	should	already	have	some	concept	of	what	constitutes	a	site	when	it	comes	to	general
network	architecture	and	addressing.	Since	the	network	exists	to	provide	services	to	the
organization,	a	site	is	very	often	defined	by	its	generic	role:	e.g.,	headquarters,	remote
office,	research	campus,	home	network,	data	center,	point-of-presence,	etc.	Often,	these
designations	are	prepended	with	actual	geograhical	locations:	e.g.,	Atlanta	HQ,	Fresno
remote	office,	Frankfurt	POP,	etc.

We	also	might	think	of	sites	more	abstractly:	e.g.,	as	discrete	LANs	behind	routing
aggregation	points,	IGP	areas,	security	domains,	etc.

NOTE

In	the	context	of	IPv6	address	planning,	it	can	be	helpful	to	think	of	a	site	as	a	fundamental	network	(or
organizational)	unit	that	receives	a	uniform	network	prefix.	Keep	in	mind	that	we	shouldn’t	define	a	site	in	a	way	that
prevents	us	from	realizing	our	basic	address	planning	principles	(an	outcome	that	is	more	likely	if	we	have	defined
too	few	or	too	many	levels	of	hierarchy).

Thus,	our	choice	of	how	we	define	a	site	within	our	network	or	organization	will	have	a
critical	impact	on	our	IPv6	address	plan;	specifically,	how	much	IPv6	address	space	we
should	request	from	an	RIR	or	ISP	(and	can	reasonably	expect	to	receive).

A	little	bit	of	background	on	the	subject	should	help	provide	some	helpful	context	for	this
process.

In	the	early	days	of	IPv6	adoption,	members	of	the	IETF	wanted	to	create	some	useful
guidelines	for	allocating	IPv6.	As	a	result,	way	back	in	2001,	the	Internet	advisory	board
(IAB)	recommended	that	the	allocation	for	“the	boundary	between	the	public	and	the
private	topology”	be	a	/48,	except	“for	very	large	subscribers.”[81]

As	we’ve	covered,	such	an	allocation	left	16	bits	available	for	additional	subnetting	before
reaching	the	/64	host	ID	boundary	and	was	seen	as	a	good	balance	in	size	for	small	and
large	enterprises,	as	well	as	home	networks.

A	fixed	/48	allocation	size	for	all	sites	offered	a	number	of	operational	and	administrative
benefits	for	both	the	allocating	agency	and	the	recipient.

For	an	RIR	or	ISP,	a	fixed	allocation	meant	they	didn’t	have	to	worry	too	much	about
whether	requests	were	appropriately	sized	or	know	too	many	of	the	gory	details	of	the
recipient’s	network	or	plans	for	growth.	A	fixed	allocation	of	sufficient	size	could	prevent
the	recipient	from	having	to	come	back	for	additional	space	any	time	soon	after	the	initial
allocation,	a	potential	boon	to	both	the	end-user	and	the	RIR	or	ISP.

For	the	recipient,	benefits	included	things	like	the	relative	ease	of	renumbering	(should	it
be	required).	With	a	fixed	allocation	size	for	sites,	any	new	allocation	would	have	the
same	number	of	bits	in	the	network	portion	of	the	address,	making	renumbering	much
simpler.	Another	benefit	would	be	being	able	to	use	and	manage	one	reverse	DNS	zone
per	site.	And	perhaps	most	compelling	of	all	(at	least	for	our	discussion)	is	that	a	fixed	/48
allocation	size	made	address	planning	and	management	much	simpler	and	more
consistent.

At	the	time,	the	issue	of	conservation	was	considered.	Would	a	/48	allocation	for	all	sites



create	premature	scarcity	in	IPv6	overall	(i.e.,	shortages	within	the	address	protocol	that
was	designed	explicity	to	overcome	a	scarcity	problem	in	the	first	place).

The	answer	was	a	resounding	no.	The	35	trillion	available	/48s	in	the	existing	global
unicast	allocation	were	deemed	sufficient	(and	with	approximately	87%	of	the	total	IPv6
address	space	remaining	unallocated,	any	misjudgements	or	miscalculations	on	this
question	would	be	easily	absorbed	by	a	newly	defined	GUA,	potentially	one	with	tighter
allocation	policies).

IN	THE	YEAR	2100	CE

Perhaps	it’s	time	for	another	demonstration	of	the	sheer	magnitude	of	the	IPv6	address	space.[82]

The	current	global	unicast	allocation	2000::/3	is	defined	by	the	three	highest-order	bits	of	the	128-bit	address	being
set	to	001.	A	little	arithmetic	reveals	that	this	allocation	is	12.5%	of	the	overall	IPv6	address	space:

Next,	we’ll	calculate	the	number	of	/48s	in	the	GUA.	This	quantity	can	be	easily	determined	by	subtracting	the
number	of	bits	defining	the	network	portion	of	the	GUA	(indicated	by	the	/3	of	its	CIDR	notation)	from	the	number	of
bits	defining	the	network	portion	of	the	site	allocation	(indicated	by	the	/48	of	its	CIDR):	e.g.,	48	-	3	=	45.	Thus,	there
are	2^45	/48s	in	the	GUA.

35,184,372,088,832

The	UN	predicts	that	by	2100	the	Earth	could	have	a	human	population	of	as	many	as	16	billion	people.	Will
posterity	have	enough	IPv6?

So	even	with	a	potential	population	of	16	billion,	there	are	still	enough	/48s	in	the	GUA	to	provide	every	person	on
Earth	with	almost	2,200	of	them	(and	that’s	with	approximately	86%	of	the	IPv6	space	still	held	in	reserve).

Based	on	these	numbers,	the	argument	goes	that	over	the	next	80	years	IP	will,	in	all	likelihood,	be	superseded	by
other	communications	protocols.

Since	then,	the	recommendations	have	been	updated	to	allow	for	subnets	smaller	than	a
/48	(e.g.,	/56)	to	be	assigned	to	sites.[83]	This	was	done	less	out	of	any	concern	for	the
potential	to	“waste”	IPv6	space	and	more	as	a	recognition	that	some	operators	would	want
the	flexibility	to	use	a	smaller	assignment	to	make	their	plan	more	operationally
manageable.	In	particular,	broadband	service	providers	might	want	to	assign	more	than	a
/64	to	CPE	devices	inferring	that	future	home	networks	will	need	additional	subnets	to
support	new	services	(without	perhaps	requiring	the	65,536	/64s	provided	by	an	entire
/48).

Of	course,	the	individual	sites	in	our	plan	could	also	require	an	IPv6	allocation	larger	than
a	/48.	As	we	develop	our	plan	according	to	the	concepts	and	principles	within	this	chapter,
it’s	perfectly	acceptable	to	conclude	that	a	/48	per	site	would	be	insufficient	to	realize	the
benefits	of	an	IPv6	address	plan.	RIR	policies	for	IPv6	are	still	evolving,	but	a	well-
designed	plan	that	maximizes	operational	benefit	for	the	requestor	and	hastens	the	overall
deployment	of	IPv6	should	be	favorably	viewed	and	accommodated,	even	if	said	plan
requires	more	than	a	/48	per	site.



Intra-Site	Versus	Inter-Site	Planning
Because	of	the	suggested	subnet	size	for	sites	(/48)	and	for	interfaces	(/64),	there	is	a
certain	amount	of	structure	already	implied	for	any	addressing	plan.

In	most	IPv6	addressing	plans,	this	structure	is	applied	geographically,	i.e.,	to	network	or
organizational	topology.

If	we	think	about	the	16	bits	between	a	/48	and	a	/64	prefix	as	most	generally	being
reserved	for	intra-site	addressing	(i.e.,	subnets	within	sites),	and	the	16	bits	between	a	/48
and	a	/32	prefix	as	generally	reserved	for	inter-site	addressing	(i.e.,	subnets	between	sites),
we’ve	identified	a	basic	structure	that	can	help	organize	our	initial	effort	(Figure	5-5).[84]

Figure	5-5.	Inter-site	and	intra-site	planning

Recall	that	the	standards	and	RIR	policies	provide	a	very	broad	definition	of	what	a	site
can	be.	As	a	result,	an	organization	has	tremendous	latitude	to	assign	site	designations.
Such	flexibility	is	beneficial	because	there	may	be	multiple	site	types,	each	with
potentially	differing	topologies.

In	the	last	chapter,	we	saw	Figure	4-1,	which	demonstrated	eight	possible	hierarchies
(created	by	choosing	different	nibble-aligned	combinations	of	the	available	16	bits)	that
we	could	use	for	a	site’s	IPv6	address	plan.	These	hiearchies	can	be	mixed	and	matched	to
create	unique	intra-site	address	plans	for	groups	of	sites	that	share	the	same	organizational
or	network	topology.	An	organization	might	need	a	small	library	of	address	plan	templates
for	when	new	sites	of	any	type	are	to	be	added.

While	multiple	types	of	sites	could	exist	(with	variations	on	the	intra-site	address	plan	for
each	type	of	site),	it’s	more	desirable	to	attempt	to	keep	the	address	plan	uniform	for	all
sites.	In	any	case,	for	most	enterprises	there	is	typically	only	one	topology	between	sites.
[85]	As	a	result,	only	one	inter-site	address	plan	is	usually	needed.	(Although	as	with	the
intra-site	address	plan,	variations	of	the	inter-site	plan	based	on	regional	or	architectural
differences	might	be	necessary	or	desirable.)



AS,	REGION,	SITE

A	common	way	to	structure	the	inter-site	part	of	an	address	plan	is	based	on	a	hierarchical	network	topology
corresponding	to	an	autonomous	system	(AS),	regions,	and	sites	(Figure	5-6).

Figure	5-6.	Inter-site	structure	using	AS/Region/Site

Typically,	the	entire	IPv6	allocation	would	be	assigned	to	the	AS.	An	AS	is	“a	set	of	routers	under	a	single	technical
administration”[86]	and	with	one	or	more	interior	gateway	protocols	(IGPs)	providing	routing	within	the	AS.	An
exterior	gateway	protocol	(EGP)	—	usually	Border	Gateway	Protocol	(BGP)	—	provides	routing	to	other	external
autonomous	systems.[87]

The	next	level	of	the	topology	for	the	inter-site	part	of	our	address	plan	is	generally	based	on	regions.	The	initial
allocation	is	carved	up	into	prefixes	of	equal	size,	which	are	then	assigned	to	specific	geographical	regions.	Regions
might	be	global,	continental,	national	—	any	designation	that	works	for	the	organization.

Finally,	each	of	those	assignments	are	themselves	divided	equally	among	the	sites	within	the	region.

Here’s	a	more	specific	example	of	how	a	large	US	enterprise	might	apply	this	concept	(Figure	5-7):

Figure	5-7.	Inter-site	structure	large	US	enterprise

TIP

For	many	organizations,	especially	those	with	very	simple	network	topologies	and	operational	requirements,	this
basic	division	is	sufficient	for	coming	up	with	a	workable	address	plan.

But	for	everyone	else,	some	additional	structure	will	be	required.	Here’s	the	general
address	plan	process:

1.	 Obtain	a	primary	IPv6	allocation.
2.	 Identify	or	define	the	organizing	attributes	and	hierarchy	of	the	network	or	the



business	(e.g.,	geographical	location,	organizational	role,	security	classification,
etc.).

3.	 Assign	blocks	of	subnets	within	each	attribute	or	hierarchical	level	to	satisfy	their
immediate	and	future	subnet	requirements.

Another	way	of	conceiving	of	this	approach	is	that	it	is	a	top-down,	compared	to	the
bottom-up,	approach	in	IPv4	relying	on	host	counts.

As	we	covered	in	the	last	chapter,	by	adhering	to	the	nibble	boundary	when	allocating	bits
for	subnets	within	a	site	or	between	sites,	a	limited	structure	or	hierarchy	can	be	achieved.
Of	course,	we’re	not	restricted	to	only	using	4-bit	boundaries.

In	fact,	we	can	represent	in	our	addressing	plan	as	many	branches	and	sub-branches	as	we
like	to	correlate	to	network	function,	location,	names	of	US	presidents,	etc.	But	we	need	to
keep	in	mind	that	the	more	levels	we	create,	the	more	complex	our	plan	becomes,	and	the
less	flexible	and	scalable	it	potentially	gets.	That’s	why	we	should	learn	and	keep	in	mind
some	general,	best-practice	principles.



IPv6	Allocation	Methods
When	you’re	putting	together	your	initial	IPv6	addressing	plan,	you’ll	obviously	need	to
allocate	subnets	to	the	various	entities	you’ve	defined	(e.g.,	regions,	sites,	buildings,
applications,	VLANs,	etc.).

When	we	talk	about	IPv6	address	allocation	methods,	we’re	really	talking	about	the	same
basic	technique	that	we	use	in	IPv4,	i.e.,	designating	bits	to	define	subnets	for	assignment.
The	minor	technical	difference,	of	course,	is	that	rather	than	converting	from	binary	to
decimal	as	we	did	with	IPv4,	we’re	converting	from	binary	to	hexadecimal.

But	we’re	still	dealing	with	the	basic	process	of	bit	math	and	subnet	definition	that	we’re
already	intimately	familiar	with	from	IPv4.	As	a	result,	the	same	allocation	methods	we
use	in	IPv4	are	available	to	us	in	IPv6.

Besides	the	minor	technical	difference	mentioned	above,	there’s	a	major	conceptual
difference	in	how	we	perform	IPv6	address	allocations.	With	IPv6,	we’re	allocating	from
abundance	rather	than	from	the	scarcity	of	IPv4.

Let’s	review	the	IPv6	allocation	methods	at	our	disposal:

Best-fit
Sparse
N+1
Random

Best-Fit	Allocation
Best-fit	allocation	usually	refers	to	the	following	method:

1.	 Find	the	smallest	unassigned	block	in	the	overall	address	space	that	the	request	fits
in.

2.	 If	possible,	successively	halve	that	block	until	the	smallest	block	that	will	meet	the
needs	of	the	request	is	defined.

3.	 Allocate	this	block.

First,	an	example	from	IPv4:	say	a	data	center	required	375	IPv4	addresses	in	the	same
subnet	to	assign	to	servers.	The	organization	is	using	10.0.0.0/8	as	its	overall	allocation,
and	the	subnet	10.10.0.0/16	has	just	been	assigned	to	the	region	that	the	data	center	is	in.
Using	the	best-fit	method,	we	don’t	have	to	think	too	hard	about	the	first	step	because	no
space	has	been	assigned	from	this	allocation	yet.	Proceeding	to	the	second	step,	we	halve
the	original	allocation	and	halve	each	resulting	half	until	we	reach	the	smallest	block	that
will	accommodate	the	request;	in	this	case,	a	/23	for	512	total	addresses,	375	of	which	are
right	around	75%	utilization.	A	pie	graph	is	helpful	in	visualizing	this	process	(Figure	5-
8).



Figure	5-8.	IPv4	best-fit	allocation	example

This	result	and	the	method	behind	it	might	typically	be	considered	the	“most	efficient”	in
terms	of	IPv4	allocation.	But	keep	in	mind	that	such	efficiency	is	defined	as	maximum
utilization	of	the	IPv4	host	addresses	available	within	the	smallest	assignable	subnet,	and
therefore,	is	primarily	about	host	address	(and	subnets	for	host	address)	conservation	(i.e.,



IPv4	thinking).

If	future	allocation	requests	are	of	a	similar	size,	it	may	be	possible	to	consistently	use
adjacent	subnets	as	you	allocate.	This,	too,	will	result	in	more	of	the	available	space	being
“filled	in”	(i.e.,	a	more	thorough	utilization	of	scarce	IPv4).

More	likely,	allocation	requests	competing	for	the	same	overall	address	space	will	arrive
at	different	times	from	different	segments	or	functions	in	the	network	topology.	The	best-
fit	method	pretty	much	ensures	that	the	resulting	discontiguous	subnets	will	be	very
difficult	to	summarize	for	purposes	of	routing	aggregation	or	access-list	(ACL)
manageability.

The	basic	method	of	best-fit	allocation	is	the	same	in	IPv6,	but	instead	of	host	address
requirements,	the	allocated	block	provides	the	number	of	subnets	needed	for	a	particular
assignment.

For	example,	if	the	data	center	from	our	first	example	has	375	VLANs	that	it	needs	/64s
for,	the	smallest	block	that	will	accommodate	the	request	is	a	/55	(Figure	5-9):



Figure	5-9.	IPv6	best-fit	example

Though	in	IPv6	we’re	defining	and	allocating	a	block	to	provide	subnets	instead	of
individual	host	addresses,	the	logic	of	the	best-fit	allocation	method	is	still	about	“right-
sizing”	the	block	to	use.	Later,	when	our	plan	is	operational	and	we’re	allocating	blocks
based	on	changing	requests,	the	subnet	size	requirements	will	vary,	depending	on	the



number	of	elements	the	requestor	needs	subnets	for.

As	a	result,	best-fit	allocation	is	typically	a	poor	first	choice	when	designing	an	initial
address	plan.

Sparse	Allocation
As	you	might	have	guessed,	sparse	allocation	is	about	leaving	a	lot	of	space	in	between
allocations.	Sparse	allocation	is	sometimes	referred	to	as	bisection.	And	though	it	shares
the	successive	halving	process	with	the	best-fit	allocation	method,	the	sparse	approach
allocates	the	block	at	the	edge	of	each	new	half.

Figure	5-10	depicts	sparse	allocation	of	/52s	using	a	pie	chart.	In	this	example,	only	the
1st,	5th,	9th,	and	13th	/52s	are	allocated,	while	the	remaining	space	between	allocations	is
held	in	reserve	for	future	use.

Figure	5-10.	Sparse	allocation	of	/52	subnets

Figure	5-11	depicts	sparse	allocation	of	/56s	using	a	pie	chart.	In	this	example,	only	the
1st,	64th,	128th,	and	192nd	/56s	are	allocated,	while	the	remaining	space	between
allocations	is	held	in	reserve	for	future	use.



Figure	5-11.	Sparse	allocation	of	/56	subnets

Recall	the	subnetting	method	from	Chapter	4	in	which	we	created	subnets	by	starting	with
and	incrementing	the	left-most	bits.

Let’s	use	the	same	site	allocation	from	the	above	best-fit	example:
2001:db8:2112::/48

We	can	safely	ignore	the	first	three	hextets	of	the	network	ID	and	focus	on	the	bits	of	the
fourth	hextet:

0000	0000	0000	0000

Next	we’ll	modify	our	best-fit	example	a	little	and	say	that	we	have	20	buildings	at	our
site.	The	minimum	number	of	bits	we’d	need	to	provide	allocations	for	all	20	buildings
would	be	5	(25	=	32).

But	recall	also	from	the	previous	chapter	the	advanatage	of	adhering	to	the	nibble
boundary.	Rounding	to	8	bits	give	us:

24(n)	(where	n=8)	=	256	possible	subnets

Since	we’re	using	8	of	the	sixteen	available	bits	for	our	fourth	hextet,	the	resulting
network	length	will	be	/56.	As	a	result,	we	don’t	care	about	the	right-most	eight	bits:

0000	0000	XXXX	XXXX

The	next	step	would	be	to	begin	with	the	remaining	left-most	bits	and	increment	bitwise
(Table	5-1):



Table	5-1.	Sparse	allocation	example

Binary,	4th
hextet

IPv6	subnet Binary,	4th	hextet
(cont.)

IPv6	subnet	(cont.)

1101	0000 2001:db8:2112:d000::/56 1110	1000 2001:db8:2112:e800::/56

0000	0000 2001:db8:2112:0000:/56 0011	0000 2001:db8:2112:3000::/56

1000	0000 2001:db8:2112:8000::/56 1011	0000 2001:db8:2112:b000::/56

0100	0000 2001:db8:2112:4000::/56 0111	0000 2001:db8:2112:7000::/56

1100	0000 2001:db8:2112:c000::/56 1111	0000 2001:db8:2112:f000::/56

0010	0000 2001:db8:2112:2000::/56 0000	1000 2001:db8:2112:0800::/56

1010	0000 2001:db8:2112:a000::/56 1000	1000 2001:db8:2112:8800::/56

0110	0000 2001:db8:2112:6000::/56 0100	1000 2001:db8:2112:4800::/56

1110	0000 2001:db8:2112:e000::/56 1100	1000 2001:db8:2112:c800::/56

0001	0000 2001:db8:2112:1000::/56 0010	1000 2001:db8:2112:2800::/56

1001	0000 2001:db8:2112:9000::/56 1010	1000 2001:db8:2112:a800::/56

0101	0000 2001:db8:2112:5000::/56 0110	1000 2001:db8:2112:6800::/56

Now	we’ll	look	at	how	these	subnets	increment	graphically.	But	because	we	don’t	want
our	graphic	to	become	too	cluttered,	we’ll	focus	on	the	first	10	entries	in	the	table	to
establish	the	sparse	allocation	pattern	(Figure	5-12).

Between	Figure	5-12	and	Table	5-1,	you	may	observe	that	the	subnets	increment	in	a	way
that	corresponds	to	a	new	allocation	at	the	edge	of	each	new	half	of	the	available	space.

One	of	the	key	advantages	of	creating	an	IPv6	address	plan	from	scratch	is	that	you	can
plan	equal-sized	address	blocks	for	levels	of	hierarchy	in	the	network.	These	equal-sized
blocks	can	then	be	sparsely	allocated,	leaving	room	for	growth	between	allocations	and
allowing	for	easier	aggregation	and	ACL	maintenance.	As	a	result,	the	sparse	allocation
method	is	typically	the	most	appropriate	one	to	use	when	creating	a	new	IPv6	addressing
plan.



Figure	5-12.	Sparse	allocation	of	/56	subnets

NOTE

One	variation	of	the	sparse	allocation	method	is	referred	to	as	growth-based.	In	this	method,	the	unused	space
contiguous	with	the	slowest	growing	allocation	is	selected	next	to	be	halved	again	to	generate	a	new	subnet
allocation.	This	approach	is	arguably	more	useful	in	service	provider	environments	where	allocations	may	go	to
different	customers	and	be	under	independent	control.	(It	conserves	the	maximum	amount	of	contiguous	space	for
faster	growing	customers.)

N+1	Allocation
N+1	allocation	(which	could	also	be	referred	to	as	sequential,	or	strict	sequential
allocation)	is	pretty	much	what	it	sounds	like:	a	larger	allocation	is	divided	evenly	among
smaller	subnets	that	are	assigned	in	numerical	order.	As	a	result,	there	is	no	space	between
subnets	to	accommodate	future	growth	for	any	of	the	assignments.	Any	original
assignment	that	required	additional	space	(except	the	most	recent	assignment)	would
necessarily	receive	a	noncontiguous	new	subnet.



N	+	1	VERSUS	SPARSE	ALLOCATION

For	this	discussion,	N	+	1	allocation	is	a	method	for	a	strict	sequential	allocation	of	subnets	within	a	site	(or	for	the
entire	IPv6	allocation),	where	N	is	equal	to	the	hexadecimal	value	of	the	allocation	immediately	prior	to	the	one	being
allocated.

Let’s	look	at	an	example	of	this	approach.

Recall	that	a	/48	gives	us	65,536	/64	networks.	Given	that	each	of	these	subnets	has	1.8x1019	addresses,	we	certainly
have	enough	to	allow	us	to	simply	begin	to	assign	/64	networks	in	a	sequential	fashion	without	worrying	about
running	out	of	addresses.

2001:db8:1100::/64									Subnet	1

2001:db8:1100:1::/64							Subnet	2

2001:db8:1100:2::/64							Subnet	3…

2001:db8:1100:ffff::/64				Subnet	65536

There	are	some	glaring	deficiencies	with	such	a	method.

First,	unless	our	network	never	changes	after	our	initial	address	allocation,	we’re	obviously	going	to	need	to	assign
additional	subnets.	If	we’re	merely	grabbing	the	next	available	subnet	in	our	list,	there’s	no	guarantee	that	this	subnet
will	be	needed	for	the	same	physical	or	logical	area	of	the	network	as	the	subnet	before	it	or	after	it.

As	a	result,	over	time,	subnets	that	should	otherwise	be	grouped	together	for	the	same	location	or	function	in	the
network	become	sporadic	and	disconnected	with	less	efficient	ways	to	logically	associate	them	with	each	other	for
management	purposes.	Also,	if	a	particular	network	location	or	function	requires	a	contiguous	block	of	prefixes,	it
may	be	necessary	to	allocate	a	previously	unused	block.

In	the	typical	hierarchical	network	topology,	these	discontiguous	networks	mean	that	our	routing	tables	are	larger	than
they	have	to	be,	with	many	/64	prefixes	routed	to	disparate	network	locations	that	would	otherwise	be	aggregated.
Larger	routing	tables	slow	down	convergence	times	and	require	more	router	memory.	The	potential	results	are	a
slower	and	more	expensive	network.

From	a	security	standpoint,	such	discontiguous	networks	also	require	more	effort	to	maintain	secure	access	to	using
ACLs.	Single	prefixes	can	result	in	longer	ACLs,	which	become	more	prone	to	configuration	errors.	Abandoned	and
out-of-date	ACL	entries	can	lead	to	costly	security	breaches.	Security	policies	in	hardware	and	software	that	assume
logical	groupings	of	network	prefixes	according	to	business	roles	and	compliance	rules	can	become	unnecessarily
complex	or	even	unenforcable.

Limited	or	no	correlation	of	business	or	administrative	logic	to	summarized	groups	of	network	prefixes	means	that	it
becomes	harder	and	more	costly	to	operate	the	network.	Any	single	prefix	could	potentially	belong	to	any	location	or
function	and	additional	context	may	be	required	to	isolate	and	effectively	troubleshoot	hosts	or	services	addressed
with	it	(or	otherwise	relying	on	it).	Operational	costs	for	troubleshooting	are	increased.

Sporadic	and	discontiguous	assignment	of	subnets	can	increase	the	cost	and	difficulty	of	maintaining	the	address	plan
itself,	especially	in	the	absence	of	specialized	IP	address	management	(IPAM)	systems	that	allow	dynamic
representation	of	the	network	prefixes	and	addresses.

By	comparison,	sparse	allocation	of	network	prefixes	within	an	IPv6	address	plan	can	prevent	the	above	issues.	It
helps	provide:

Sufficient,	contiguous	IP	space	in	reserve	for	future	growth
Well-defined	and	stable	boundaries	leading	to	more	efficient	routing	and	easier	management	of	security	policy
and	associated	ACLs
A	better	basis	for	correlating	the	topology	of	the	network	to	the	structure	of	the	organization
Easier	network	operation	and	troubleshooting
Cleaner,	tidier,	and	more	error-free	creation	and	administration	of	the	plan	itself

Finally,	keep	in	mind	that	within	sparsely	allocated	subnet	groups	themselves,	N	+	1	allocation	is	not	necessarily
problematic.	In	fact,	allocating	the	next	available	subnet	is	often	the	preferred	method	of	assigning	/64s	within	a
larger	sparse	allocation.

Random	Allocation
Random	allocation	also	divides	a	parent	allocation	evenly	among	smaller	subnets,	but	as
compared	with	N+1	allocation,	assigns	them	not	in	order	but	rather	in	a	random	fashion.



Such	a	method	may	be	of	use	where	assignments	are	more	dynamic	since	it	could	be	used
to	provide	a	minimal	layer	of	security	by	obscuring	assignment	logic	(as	compared	with
any	of	the	other	allocation	techniques).	While	this	method	increases	the	probability	that	a
contiguous	subnet	would	be	available	for	growing	a	previous	assignment,	we’ll	go	ahead
and	infer	that	any	deployment	utilizing	this	approach	isn’t	too	concerned	with
summarization	or	ACL	manageability.



Assigning	Subnets	by	Location	or	Function
Two	of	the	most	common	organizational	attributes	used	to	define	and	assign	subnets
within	a	site	are	location	and	function.

Location,	as	the	name	implies,	is	usually	physical	in	nature	and	corresponds	to	an	actual
geographical	location	within	the	organization	that	contains	some	part	of	the	network:	e.g.,
buildings,	floors,	IDFs	(if	you’re	into	old-school	telco	jargon),	etc.

Functions,	meanwhile,	can	be	any	logical	or	administrative	entity	and	are	often	associated
with	some	specific	set	of	users	(e.g.,	students,	guests),	hosts	(e.g.,	mobile	devices),	servers
(e.g.,	development,	finance),	or	roles	(e.g.,	accounting,	engineering).

Either	function	or	location	significance	assigned	within	a	site	prefix	can	be	generalized
and	kept	consistent	across	multiple	sites	for	maximum	operational	consistency	and
efficiency,	even	as	the	site	prefix	changes.

Let’s	look	at	assigning	location	signifcance	to	subnets	created	from	a	sample	site	prefix.
Here’s	a	generic	site	assignment:

2001:db8:2112::/48

As	we	reviewed	in	Chapter	4,	we	can	create	subnets	and	groups	of	subnets	using	any	of
the	16	bits	available	to	us	from	/48	to	/64.	The	Xs	in	the	brackets	of	the	fourth	hextet
represent	binary	bits:

2001:db8:2112:[XXXXXXXXXXXXXXXX]::

Recall	also	that	adherence	to	the	nibble	boundary	when	defining	subnets	helps	keep
resulting	address	prefixes	readable	(also,	consistently	sized,	easy	to	aggregate,	and	more
operationally	manageable,	etc.):

2001:db8:2112:[XXXX	XXXX	XXXX	XXXX]::

Choosing	to	adhere	to	the	nibble	boundary	also	reduces	the	number	of	available	hierarchy
levels,	which	can	greatly	simplify	our	address	planning.	The	only	requirement	is	that	this
simplifed	hierarchy	needs	to	fit	the	underlying	network	topology	or	organizational
structure.

Let’s	give	the	first	nibble	location	significance:
2001:db8:2112:[LLLL	XXXX	XXXX	XXXX]::

This	creates	16	/52	subnets.	Expressed	in	hexadecimal	(where	Us	represent	unused
hexadecimal	characters):

2001:db8:2112:[0-f]UUU::/52

So,	in	this	case,	the	first	level	of	hierarchy	for	a	site	would	be	16	/52	subnets	that	we’ve
assigned	location	significance;	e.g.,	say	we’re	creating	an	address	plan	for	a	campus	with
fewer	than	16	buildings	(Figure	5-13).[88]



Figure	5-13.	16	/52s,	Location	significance	in	first	nibble

12	bits	remain	to	assign	to	additional	locations	(or	3	nibbles	to	keep	the	example
consistent).

Recall	that	groups	of	subnets	assigned	a	location	are	often	defined	to	correspond	to	a	point
of	aggregation	within	the	network.	And,	of	course,	we’re	not	limited	to	location	in
assigning	any	of	the	next	nibbles.	Functional	assignments	for	groups	of	subnets	often
correspond	to	security	policy	and	ACL	entries.

With	that	in	mind,	we’ll	give	the	next	nibble	functional	significance:
2001:db8:2112:[LLLL	FFFF	XXXX	XXXX]::

This	creates	16	/56	subnets:
2001:db8:2112:L[0-f]UU::/56

L	represents	the	location	subnets,	while	Us	still	represents	unused	hexadecimal	characters.

So	now	we	have	16	/52	subnets	for	each	network	location,	each	with	16	/56	subnets	that
can	be	assigned	to	network	function	(Figure	5-14).

Figure	5-14.	16	/56s,	Function	significance	in	second	nibble

In	the	example	above,	we’ve	selected	four	functions	(Accounting,	IT,	Lab	1,	and	Lab	2)
that	correspond	to	groups	of	hosts	sharing	a	particular	security	policy.	Administration	of
their	associated	ACL	entries	is	greatly	simplified	by	each	function’s	well-defined	(and
human-readable)	prefix.



At	this	point,	we	could	use	the	256	/64s	in	each	/56	for	individual	router	or	switch
segment	interface	assignments.

2001:db8:2112:LF[0-f][0-f]::/64

You	may	recall	that	this	progressive	allocation	of	bits	along	the	nibble	boundary
corresponds	to	one	of	the	paths	in	the	IPv6	site	visualization	example	from	Chapter	4
(Figure	4-2).

Note	also	that	we’ve	held	the	first	subnet	(2001:db8:2112:1000::/56)	and	last	subnet
(2001:db8:2112:1f00::/56)	in	reserve.	There	are	two	reasons	for	this.

The	first	reason	applies	only	to	the	first	subnet	(and	its	equivalent	in	other	subnet	groups).
It’s	explained	in	greater	detail	in	Zero	Subnets	Have	a	Problem,	but	to	briefly	summarize:
any	subnet	uniquely	identified	by	a	zero	can	cause	confusion	for	operational	personnel.
It’s	common	sense	to	want	to	identify	the	first	subnet	in	any	group	with	the	number	1	(as
opposed	to	0).

The	second	is	that,	whatever	other	subnets	we	might	hold	in	reserve	for	future	use,	we
have	at	least	two	“last-resort”	subnets	reserved	at	this	level	of	hierarchy.



VLAN-Mapped	IPv6	Addresses
While	it’s	generally	not	recommended	to	tie	the	IPv6	addressing	plan	to	the	existing	IPv4
one,	some	network	administrators	have	historically	found	it	beneficial	to	map	VLAN
numbers	into	IPv4	addresses.

This	practice	is	even	easier	to	accommodate	in	IPv6,	given	the	much	larger	standard	prefix
assignment	sizes	and	the	additional	bits	available	to	represent	and	encode	information	like
VLAN	numbers.

The	easiest	method	to	accomplish	this	is	to	simply	use	decimal	values	in	the	address	to
represent	the	VLAN.	For	example,	say	a	site	receives	the	standard	/48	assignment:

2001:db8:b0b0::/48

Our	example	site	has	a	few	dozen	VLANs	defined	and	configured.	Because	of	changes	to
the	network	over	time,	these	VLANs	are	not	contiguous	and	are	not	consistently
numbered	but	range	in	value	from	VLAN	2	up	to	VLAN	3030.	Here’s	a	small	sample	of
the	VLANs	in	use:

VLAN	2

VLAN	5

VLAN	10

VLAN	12

VLAN	200

VLAN	210

VLAN	1501

VLAN	3030

Using	the	four	characters	of	the	fourth	hextet	allows	us	to	easily	map	these	VLANs	into
our	site	assignment	prefix:

2001:db8:b0b0:2::/64

2001:db8:b0b0:5::/64

2001:db8:b0b0:10::/64

2001:db8:b0b0:12::/64

2001:db8:b0b0:200::/64

2001:db8:b0b0:210::/64

2001:db8:b0b0:1501::/64

2001:db8:b0b0:3030::/64

This	simple	method	makes	it	easy	to	track	and	troubleshoot	VLANs	and	their	associated
address	ranges.	But	you	may	observe	that	since	these	are	actually	hexadecimal	values
being	interpreted	as	decimal,	the	associated	subnets	are	distributed	piecemeal	throughout
the	overall	assignment.	Look	at	the	distribution	of	bits	within	the	fourth	hextet	(Table	5-2):



Table	5-2.	VLAN	hex-as-decimal	values	into	binary

Hexadecimal	interpreted	as	decimal Binary

0x3030 00110000	00110000

0x0002 00000000	00000010

0x0005 00000000	00000101

0x0010 00000000	00010000

0x0012 00000000	00010010

0x0200 00000010	00000000

0x0210 00000010	00010000

0x1501 00010101	00000001

This	distribution	of	bits	prevents	easy	summarization	or	subnetting	of	the	remaining
address	space.	If	the	site	is	relatively	small	and	topologically	flat	(and	likely	to	remain	that
way	indefinitely),	the	simplicity	and	operational	benefit	of	this	method	may	offset	any
resulting	liability.

But	most	sites	will	have	at	least	some	network	hierarchy	or	other	logical	structure	that
makes	it	beneficial	to	preserve	some	bits	to	use	for	consistent	summarization	or
subnetting.

This	can	be	accomplished	by	converting	VLAN	decimal	values	to	hexadecimal	(Table	5-
3):

Table	5-3.	VLAN	decimal	values	into	hexadecimal

VLAN	number Hexadecimal

3030 0x0bd6

2 0x0002

5 0x0005

10 0x000a

12 0x000c

200 0x00c8

210 0x00d2

1501 0x05dd



Since	the	maximum	number	of	VLANs	is	4,096,	all	possible	VLAN	values	can	be
represented	with	12	bits.	Here’s	how	the	original	addresses	would	be	expressed
hexadecimally:

2001:db8:b0b0:2::/64

2001:db8:b0b0:5::/64

2001:db8:b0b0:a::/64

2001:db8:b0b0:c::/64

2001:db8:b0b0:c8::/64

2001:db8:b0b0:d2::/64

2001:db8:b0b0:5dd::/64

2001:db8:b0b0:bd6::/64

With	this	configuration,	4	bits	remain	for	a	total	of	15	additional	subnets	(each	with	up	to
4,096	VLANs):

2001:db8:b0b0:[1-f]XXX::/52

Using	this	method,	some	of	the	immediate	operational	benefit	is	arguably	lessened:
operations	personnel	would	now	need	to	first	convert	hexadecimal	into	decimal	before
correlating	a	given	subnet	with	its	associated	VLAN.	However,	the	architectural	benefit	of
reserving	at	least	some	subnets	for	additional	assignments	will	make	the	trade-off
worthwhile	for	most	planners.



Summary
When	the	proper	concepts	are	understood	and	the	right	principles	are	applied,	IPv6	offers
the	opportunity	to	create	an	address	plan	that	is	scalable,	flexible,	extensible,	manageable,
and	durable	far	beyond	what	is	possible	with	IPv4	networks.	Moreover,	the	operational
benefits	of	a	proper	plan	extend	beyond	the	simple,	effective	management	of	the	IPv6
prefixes	themselves.	The	ability	to	encode	network	location	and	function	in	prefixes
provides	another	layer	of	useful	data	for	effective	identification,	isolation,	and
troubleshooting	of	network	issues.

The	basic	method	in	IPv6	address	planning	of	defining	and	assigning	blocks	of	subnets
based	on	the	structure	of	the	network	or	the	organization	moves	us	away	from	the	IPv4
thinking	that	obliged	us	to	consider	scarcity	and	waste	and	to	allocate	addresses	and
prefixes	primarily	on	the	basis	of	host	conservation.	There	are	certainly	risks	of	too	much
deference	to	our	existing	IPv4	address	plan	and	allocation,	especially	considering	that
IPv4	will	soon	become	the	legacy	protocol.

A	broad	and	flexible	definition	of	what	constitutes	a	site	along	with	inter-site	and	intra-site
planning	concepts	provides	a	simple	but	powerful	framework	to	apply	to	our	own	address
plans	and	the	networks	they	serve.	These	also	allow	for	the	attainment	of	the	address
planning	principles	that	will	ensure	that	our	plan	endures	through	the	inevitable	growth
and	change	of	our	respective	organizations	and	networks.	These	principles	include
properly	sized	initial	allocations,	sparse	assignment	of	subnets,	hierarchical	organization
of	subnets,	adherence	to	nibble	boundaries	where	practical,	and	uniform	subnetting	and
summarization.

[76]	While	it’s	certainly	theoretically	possible	to	receive	too	much	IPv6	space,	any	conclusion	that	too	much	space	has
been	allocated	needs	to	be	scrutinized	through	a	careful	assessment	of	the	proposed	IPv6	address	plan.	Such	an
assessment	should	focus	on	the	operational	viability	of	the	plan.	In	other	words,	does	it	make	network	operations	over
time	easier	rather	than	harder?

[77]	Recall	that	a	site	in	IPv6	is	a	logical	concept	and	can	apply	to	any	consistently	defined	network,	location,	function,
etc.

[78]	Note	that	this	principle	has	been	reflected	in	the	IPv6	standards	suggesting	/48	site	prefixes	and	/64	interface
prefixes.

[79]	Though	I’ve	used	the	IPv4	and	IPv6	documentation	prefixes	for	the	example	above,	in	an	actual	production
configuration,	the	mapped	address	would	be	constructed	from	globally	unique	(i.e.,	public)	addresses.

[80]	Recall	that	this	is	an	ideal	outcome	according	to	the	general	principle	of	Subnets	in	Reserve	we	covered	earlier	in
the	chapter.

[81]	RFC	6177,	IPv6	Address	Assignment	to	End	Sites.

[82]	This	one	is	courtesy	of	IPv6	solutions	manager,	Cisco	Press	and	Network	World	author	Jeff	Doyle	(CCIE	#1919).

[83]	RFC	6177.

[84]	If	your	IPv6	address	plan	is	for	a	large	service	provider	or	enterprise,	you	may	receive	an	allocation	larger	than	a
/32,	but	the	principle	is	essentially	the	same.

[85]	If	the	enterprise	is	large	enough,	it	may	have	multiple	routing	domains	in	multiple	regions,	perhaps	requiring
different	address	plans	depending	on	the	topology	(or	topologies).

http://bit.ly/rfc-6177


[86]	RFC	1930,	Guidelines	for	creation,	selection,	and	registration	of	an	Autonomous	System	(AS).

[87]	It’s	natural	and	appropriate	to	associate	the	idea	of	autonomous	system	with	the	autonomous	system	numbers
(ASNs)	used	in	BGP.	But	while	some	enterprises	may	not	run	BGP,	they	will	almost	certainly	have	an	AS	(according	to
the	above	definition)	to	administer	and	assign	their	IPv6	allocation	to.

[88]	Or,	if	we’d	like	to	leave	room	for	growth,	12	buildings	or	fewer	to	stick	to	a	≤75%	utilization	factor.

http://bit.ly/rfc-1930




Chapter	6.	Getting	IPv6	Addresses



Introduction
Creating	our	first	IPv6	address	plan	presents	another	minor	catch-22	scenario:	it’s	a	little
more	complicated	to	construct	an	address	plan	without	knowing	up	front	how	much	IPv6
address	space	we’ll	need.	On	the	other	hand,	it’s	also	difficult	to	know	how	much	IPv6
address	space	to	request	until	we’ve	worked	through	enough	of	our	plan	to	be	confident
that	we’re	asking	for	the	right	amount.

So	we’ll	actually	have	to	do	a	bit	of	address	planning	design	before	we	request	an	IPv6
allocation.	While	we’ve	established	that	the	enormous	size	of	the	typical	allocation	makes
sufficient	host	addressing	concerns	generally	irrelevant,	we	still	need	enough	groups	of
subnets	to	make	sure	our	address	plan	provides	operational	efficiency	and	manageable
growth.

Keep	in	mind	that	since	we’re	constructing	an	address	plan	geared	toward	operational
efficiency,	one	where	conservation	of	address	space	is	in	nearly	all	cases	a	negligible
concern,	it	should	be	possible	to	use	the	ideas	and	methods	in	this	book	to	develop	a	plan
based	on	the	assumption	that	we’ll	be	granted	the	address	space	we	need	from	the
allocating	agency.	While	a	rough	estimate	of	the	right	amount	of	address	space	may	be
useful	to	help	us	get	started	with	developing	our	plan,	we	should	be	perfectly	comfortable
with	coming	to	realize	as	we	work	through	the	planning	process	that	we	need	more	(or
less)	address	space	than	we	initially	assumed.

TIP

Your	plan	should	drive	your	ultimate	allocation	size.	Avoid	constraining	your	plan	within	a	smaller	allocation	if	you
could	make	your	plan	more	operationally	efficient	with	additional	address	space.



The	IP	Address	Supply	Chain
It’s	probably	a	good	idea	to	review	the	global	allocation	structure	of	IP	addressing
(Figure	6-1).

Figure	6-1.	Global	IP	address	allocation	structure

The	Internet	Assigned	Numbers	Authority	(IANA)	is	the	centralized	global	authority	that
allocates	all	IP	addresses	(and	AS	numbers)	to	the	Regional	Internet	Registries.[89]

There	are	five	RIRs,	correlating	roughly	to	five	of	the	seven	continents:

American	Registry	for	Internet	Numbers	(ARIN)	for	North	America
Réseaux	IP	Européens	Network	Coordination	Centre	(RIPE	NCC)	for	Europe	(as	well
as	the	Middle	East	and	parts	of	Central	Asia)
Asia-Pacific	Network	Information	Centre	(APNIC)	for	Asia	and	Oceania
Latin	American	and	Carribean	Network	Information	Centre	(LACNIC)
African	Network	Information	Center	(AFRINIC)

Each	RIR	in	turn	allocates	IP	address	blocks	to	downstream	ISPs	—	aka	Local	Internet
Registries	(or	LIRs).	RIRs	may	also	allocate	addresses	directly	to	large	end-user
organizations.	These	have	traditionally	been	large	corporate	and	government	enterprises
that	typically	have	more	than	one	ISP	providing	conncetivity	to	the	Internet.	But	smaller
enterprises	and	organizations	desiring	better	network	resiliency,	routing	performance
optimization,	and	always-on	access	to	cloud	services	can	multihome	their	networks	as
well.	As	a	result	some	enterprise	networks	are	requesting	portable	provider	independent
IPv6	address	space	(i.e.,	routable	via	any	ISP,	at	least	within	one	region)	directly	from
their	RIR.



So	Where	Will	Your	IPv6	Addresses	Come	From?
Well,	that	depends.

At	its	most	basic,	the	process	for	getting	IPv6	address	space	is	pretty	much	the	same	as	the
process	for	getting	IPv4	addresses.	But	you’ll	need	to	request	them	from	the	right
organization.	Though	it’s	probably	reasonable	to	assume	you’ll	be	getting	your	IPv6	from
whence	came	your	IPv4,	it’s	also	possible	your	requirements	for	IPv6	may	differ	enough
from	IPv4	that	your	best	source	for	IPv6	address	space	may	differ	as	well.

In	any	case,	there	are	generally	three	types	of	organizations	that	will	provide	you	with
IPv6	addresses:

A	RIR	(or	RIRs)
An	ISP	(or,	in	the	lingo	of	the	RIRs,	a	Local	Internet	Registry,	i.e.,	LIR)
A	department	within	your	organization

Which	of	these	you	get	your	IPv6	addresses	from	typically	depends	on	a	few	criteria,
including	your	network	and	routing	topology,	as	well	as	the	specific	addressing
requirements	of	your	organization	(or	department).

How	Many	ISPs	Do	You	Connect	To?
Asking	the	number	of	ISPs	you	connect	to	is	another	way	of	asking	are	you	single-homed
or	multihomed?	In	other	words,	does	your	organization	connect	to	a	single	ISP	or	more
than	one?	The	reason	this	is	important	is	that	organizations	with	multiple	ISPs	for
redundancy	must	have	portable	IP	allocations.	Portable	allocations	are	assigned	by	RIRs
directly	to	the	organization.	As	we	covered	in	Chapter	2,	these	allocations	are	formally
referred	to	as	provider	independent	(PI)	and	should	be	able	to	be	routed,	or	announced,
through	any	ISP.

An	organization	that	is	single-homed	typically	receives	a	nonportable,	provider	assigned
(PA)	assignment	from	an	ISP.	The	ISP	has	administrative	authority	for	the	addresses	they
use	for	PA	assignments.	If	the	organization	changes	ISPs,	they’ll	have	to	renumber	out	of
their	old	ISP’s	PA	assignment	(and	into	a	PA	assignment	from	their	new	provider).
Meanwhile,	portable	allocations	allow	an	organization	to	keep	the	same	addresses	and
internal	numbering	scheme,	regardless	of	which	ISP	(or	ISPs)	they	connect	to.

Another	advantage	of	PI	space	is	that	it	allows	an	organization	to	maintain	a	highly
available	network	via	multiple	providers	without	any	manual	routing	changes	or	other
special	configurations.	Consistent	routing	policy	can	be	developed	over	time	to	influence
and	optimize	inbound	traffic	in	a	scalable	way	that	may	be	difficult	or	impossible	where
an	organization	is	single-homed	and	relying	on	a	PA	allocation.

How	Large	Is	Your	Organization?
Other	criteria	for	determining	where	your	IPv6	address	space	request	should	go	include
the	amount	of	IPv6	address	space	your	organization	may	need	and	the	amount	of	network
growth	or	change	you	anticipate.

As	we	covered	in	the	last	chapter,	if	you’re	a	large	enterprise,	you	may	need	as	much	as	a
/32	of	address	space	(or	more).	Depending	on	the	ISP,	that	could	be	all	the	space	they’ve



been	allocated!	And,	of	course,	large	enterprises	are	more	likely	to	rely	on	multiple	ISPs,
making	PI	space	a	requirement.

Larger	organizations	are	also	more	likely	to	have	areas	of	the	network	that	require
renumbering	(either	through	growth	or	change	or	from	merger	and	acquisition	activity),
making	PA	space	problematic.

So	Why	Doesn’t	Everyone	Just	Get	a	PI	Allocation?
From	our	network	operator	perspective,	a	provider	independent	address	allocation	appears
more	desirable	than	a	provider	assigned	allocation	in	how	it	can	add	and	insure	some
operational	ease	in	the	network	(e.g.,	more	flexible	routing	policy,	reduced	likelihood	of
having	to	renumber,	etc).	And	while	RIRs	like	ARIN	have	gone	to	great	lengths	to	create
policies	that	favor	easier	network	growth	and	operation,	giving	PI	space	to	everyone	is
problematic.

Remember	the	dilemma	of	scale	from	Chapter	1?	While	IPv6	creates	a	better	balance
between	an	individual	organization’s	addressing	needs	and	keeping	the	global	routing
table	small,	it	doesn’t	eliminate	the	tension	between	these	two	conflicting	goals	entirely.

Every	additional	PI	allocation	for	an	organization	creates	at	least	one	more	entry	in	the
ISP’s	and	global	routing	table	—	an	entry	that	would	otherwise	be	subsumed	in	an	ISP
allocation	that	the	same	organization’s	PA	space	would	be	assigned	from	(Figure	6-2).



Figure	6-2.	PA	versus	PI	effect	on	routing	tables

So	with	all	that	in	mind,	here’s	a	simple	flowchart	for	determining	what	kind	of	IPv6
allocation	your	organization	is	likely	to	need	and	from	whom	to	request	it	(Figure	6-3).



Figure	6-3.	Determining	best	type	and	source	for	a	new	IPv6	allocation



ARIN	PI	REQUIREMENTS

Keep	in	mind	that	the	requirements	for	PI	IPv6	address	space	allocations	directly	to	end-users	(as	opposed	to	ISPs)
vary	among	RIRs.[90]	For	example,	here	are	ARIN’s	initial	assignment	requirements:

Organizations	may	justify	an	initial	assignment	for	addressing	devices	directly	attached	to	their	own	network
infrastructure,	with	an	intent	for	the	addresses	to	begin	operational	use	within	12	months,	by	meeting	one	of	the
following	criteria:

Having	a	previously	justified	IPv4	end-user	assignment	from	ARIN	or	one	of	its	predecessor	registries,	or;
Currently	being	IPv6	Multihomed	or	immediately	becoming	IPv6	Multihomed	and	using	an	assigned	valid	global
AS	number,	or;
By	having	a	network	that	makes	active	use	of	a	minimum	of	2,000	IPv6	addresses	within	12	months,	or;
By	having	a	network	that	makes	active	use	of	a	minimum	of	200	/64	subnets	within	12	months,	or;
By	providing	a	reasonable	technical	justification	indicating	why	IPv6	addresses	from	an	ISP	or	other	LIR	are
unsuitable.

One	other	justification	that	ARIN	will	consider	in	allocating	a	PI	prefix	is	if	future	renumbering	would	impact	more
than	2,000	individuals.



Everything	You	Didn’t	Realize	You	Wanted	to	Know	About
RIR	Policy
No	phrase	in	English	(or	any	other	language	for	that	matter)	consistently	fails	to	stir	the
imagination	like	“governance,	regulation,	and	policy.”[91]

But	when	we’re	dealing	with	any	shared	resource,	as	we	are	with	IP	addresses,	at	least	a
modicum	of	regulation	is	necessary.	If	we	want	continued	access	to	address	resources,
we’ll	need	to	familiarize	ourselves	with	such	regulation.

Fortunately,	the	RIR	policy	that	we’ll	need	to	know	(or	at	least	be	aware	of)	is	relatively
brief	and	refreshingly	sane.

For	one	thing,	if	you	are	in	North	America	(excepting	Mexico,	whose	number	resources
are	handled	by	LACNIC),	you’ll	hopefully	be	pleased	to	know	that	the	regional	Internet
registry	ARIN	has	traditionally	formulated	its	policies	with	the	primary	goal	of	facilitating
network	operations	by	making	sure	that	organizations	get	the	address	resources	that	they
need.

The	bible	for	all	things	policy-related	at	ARIN	is	the	Number	Resource	Policy	Manual
(NRPM).[92]

In	it,	ARIN	outlines	its	overall	principles	and	goals,	as	well	as	the	ones	specific	to	IPv6.
Its	general	principles	actually	provide	some	insight	into	why	address	planning	principles
are	what	they	are,	as	well	as	some	hints	as	to	what	we’ll	need	to	consider	in	maintaining
our	own	address	plan.	(If	you	think	about	it,	the	RIRs	have	pretty	big	address	plans	they
need	to	maintain).	These	principles	include:

Registration

Registration	helps	ensure	uniqueness	of	allocated	resources.	If	every	address	block	is
properly	registered	and	documented,	the	possibility	of	accidental	overlapping
assignments	is	greatly	reduced,	if	not	entirely	eliminated.	Additionally,	registration
provides	a	basic	measure	of	accountability	if	illegal	or	unethical	activities	are
originating	from	the	networks	registered	to	a	particular	party.	Registration	also	provides
a	way	to	contact	the	adminstrators	responsible	for	networks	numbered	into	a	particular
registered	range.	This	can	help	facilitate	coordination	of	routing	policy	and
troubleshooting	between	different	organizations	and	autonomous	systems.

Conservation

According	to	the	ARIN	NRPM,	the	principle	of	conservation	“guarantees	sustainability
of	the	Internet	through	efficient	utilization	of	unique	number	resources”	and	that
“conservation…requires	that	Internet	number	resources	be	efficiently	distributed	to
those	organizations	who	have	a	technical	need	for	them	in	support	of	operational
networks.”



NOTE

Remember	our	discussion	of	efficiency?	If	we	were	casually	reading	the	above	paragraph	without	the	context	of	that
discussion	we	might,	in	our	habit	of	IPv4	thinking,	conclude	that	ARIN	is	defining	efficiency	in	a	way	that	merely
encourages	the	conservation	of	host	addresses.	But	support	of	operational	networks	is	a	big	part	of	ARIN’s	DNA	and
their	policies	relating	to	IPv6	allocation	express	this.	Recall	also	that	the	sustainability	of	the	Internet	is	at	least	partly
about	conservation	of	router	resources	and	the	efficiency	of	the	global	routing	table	(the	same	is	true,	of	course,	for
smaller	networks).	Incidentally,	that’s	the	next	principle.

Routability

ARIN	also	fundamentally	concerns	itself	with	whether	or	not	the	IP	address	prefixes	it
allocates	will	be	routed	in	a	scalable	fashion.	Continued	access	to	IP	address	(and	AS
number)	resources	for	a	given	assignee	(allocatee?)	is	premised	on	their	good	faith
adherence	to	community	standards	in	how	address	prefixes	are	routed	on	the	Internet.

Stewardship

This	just	means	that	ARIN	will	apply	the	above	principles	in	administering	Internet
number	resources.	Their	stated	goal	is	“distribute	unique	number	resources	to	entities
building	and	operating	networks	thereby	facilitating	the	growth	and	sustainability	of	the
Internet	for	the	benefit	of	all.”	Sometimes	this	goal	involves	trade-offs	between	these
principles	(and	resulting	modification	of	policy),	but	ARIN	works	hard	to	involve	the
community	of	Internet	operators	in	these	decisions	with	a	maximum	of	transparency.[93]

It’s	beyond	the	scope	of	this	book	to	explore	the	differences	between	policies	at	the	RIRs.
I	encourage	you	to	visit	the	website	of	the	registry	for	your	region	to	learn	more	about
how	their	specific	guidelines	may	affect	your	IPv6	address	request.

OUT-OF-REGION	ANNOUNCEMENTS

The	simplest	definition	of	an	out-of-region	announcement	is	PI	space	from	one	of	the	RIRs	being	announced	through
a	network	egress	point	within	the	geographical	region	of	a	different	RIR.

For	reasons	of	policy,	RIRs	have	either	explicitly	or	implicitly	discouraged	this	practice.	It	was	traditionally	seen	as	a
violation	of	the	remit	that	RIRs	have	to	manage	the	number	resources	of	their	particular	geographic	region.

The	policy	seemed	to	make	more	sense	when	those	number	resources	were	limited	(or	exhausted)	as	they	were	in
IPv4.	But	prohibiting	out-of-region	announcements	results	in	organizations	with	global	networks	having	to	announce
at	least	one	prefix	for	each	geographic	region.

In	another	example	of	the	shift	to	efficiency	through	aggregation	not	address	conservation	that	IPv6	enables,	the
current	policy	(as	least	where	ARIN	is	concerned)	is	to	favor	allowing	out-of-region	announcements.	A	global
organization	free	to	announce	an	ARIN	allocation	within	other	regions	(as	opposed	to	at	least	one	prefix	per	region)
should	result	in	fewer	global	routing	table	entries.

You	may	recall	that	in	the	preface,	I	mentioned	my	own	first	experience	with	obtaining	IPv6	addresses.	Working	for	a
service	provider	with	a	presence	in	North	America,	Europe,	and	Asia-Pacific	suggested	to	us	at	the	time	that	we
would	need	IPv6	address	space	from	each	associated	RIR.

After	receiving	conflicting	information	as	to	how	RIR	policy	was	likely	to	evolve,	we	decided	to	make	sure	that	we
had	an	IPv6	allocation	from	each	RIR.	It	may	be	prudent	for	any	organization	doing	business	in	multiple	regions	to
secure	an	IPv6	allocation	from	each	associated	RIR	to	number	into,	in	case	the	policy	should	change	(or	for
maximum	routing	policy	flexibility	in	case	of	contingencies).



Measuring	IPv6	Address	Consumption
At	the	beginning	of	the	book,	we	looked	at	a	specific	example	of	how	immaterial	host
address	consumption	is	when	there	are	18	quintillion	addresses	available	in	the	smallest
subnet	typically	assigned.	Thus,	we’ve	attempted	to	grow	the	definition	of	efficiency
beyond	mere	address	conservation	to	durably	include	broader	operational	concerns	(e.g.,
minimizing	routing	convergence	time	and	routing	table	size,	increasing	manageability	of
ACLs	and	security	policy,	increasing	human-readability	of	IPv6	subnets,	avoiding
renumbering,	etc.).

That	said,	an	effective	(and	sanctioned)	way	to	measure	the	utilization	of	IPv6	is
something	we’ll	need	in	our	tool	belt.	At	first,	it	can	help	us	determine	the	initial	size	of
the	allocation	we’ll	need.	Later,	we	can	use	it	to	monitor	utilization	and	plan	additional
assignments.

The	metric	often	used	by	allocating	agencies	is	called	the	Host-Density	(HD)	Ratio:[94]

This	equation	produces	a	value	between	0	and	1	that	is	then	represented	as	a	percentage.

So	that’s	the	formal	method.	But	it’s	simpler	and	easier	to	just	remember	the	figure	75%.
That’s	the	percentage	of	utilization	threshold	set	by	ARIN	when	considering	if	anything
larger	than	a	/56	is	fully	utilized.	Anything	smaller	than	a	/56	is	considered	fully	utilized
immediately	upon	assignment.	And	although	ARIN	sets	the	boundary	for	the	requirement
to	determine	utilization	at	a	/56,	they	typically	allocate	at	least	a	/48	to	any	requesting
organization.

The	75%	threshold	is	somewhat	arbitrary	because	it	assumes	that	if	you’re	below	it,	you
have	sufficient	headroom	for	additional	growth,	but	if	you’re	above	it,	you’ll	immediately
need	additional	address	space	to	accomodate	growth	(and	avoid	renumbering).
Organizations	that	are	growing	quickly	(such	as	service	providers)	might	consider	using	a
lower	threshold	value,	say	60%,	to	provide	additional	space	for	expansion.



Determining	Initial	Allocation	Size
Determining	the	size	of	allocation	we’ll	need	based	on	the	number	of	sites	we	have	is	the
easiest	way	to	demonstrate	our	75%	threshold	in	action.

Let’s	say	my	enterprise	is	smallish	and	has	only	five	sites:	a	headquarters	office,	three
branch	offices,	and	a	data	center.

Five	sites	would	need	at	least	5	/48s.	Three	additional	bits	would	provide	8	/48	subnets.	So
a	/45	would	suffice	for	our	immediate	addressing	needs.

Five	subnets	out	of	an	available	eight	puts	us	at	62.5%	utilization,	below	our	75%
threshold.	But	recall	from	the	previous	chapter	that	as	a	best	practice	we	should	dedicate
an	entire	additional	/48	for	infrastructure.	This	takes	us	right	up	to	our	75%	threshold,
which	should	trigger	the	next	largest	allocation,	or	a	/44.[95]

Since	a	/44	has	16	/48s,	any	request	for	up	to	eleven	sites	will	yield	a	/44	from	ARIN.[96]
Twelve	sites	up	to	the	75%	threshold	for	the	next	nibble	boundary,	or	191	sites,	would
result	in	a	/40	being	allocated.	Table	6-1	displays	the	next	two	increments.

Table	6-1.	Allocation	size	per	site	count

Number	of	sites ARIN	allocation

3,073-49,152 /32

1-12 /44

13-192 /40

193-3,072 /36

It’s	unlikely	that	any	enterprise	will	have	more	than	49,151	physical	(or	even	logical)	sites
so	a	/32	would	prove	sufficient	in	most	scenarios.

So	the	75%	threshold	is	suitable	as	a	generic	guideline	for	measuring	utilization	during
both	the	address	planning	and	management	phases.

During	the	planning	phase,	it	can	be	used	to	determine	if	a	particular	prefix	allocation	will
be	sufficient	for	the	number	of	subnets	needed	for	a	particular	function	or	location.	It	can
also	be	used	to	anticipate	the	allocation	one	is	likely	to	receive	from	a	RIR,	based	on	the
address	plan	and	subsequent	allocation	request.

During	the	operational	phase,	it	can	be	used	as	a	threshold	to	trigger	assignment	of
additional	subnets	(preferred)	or	renumbering	(worst	case).	As	we	mentioned,	the	rate	of
subnet	assignment	may	vary	between	and	within	organizations.	If	the	rate	of	growth	is
slow,	a	higher	threshold	may	be	acceptable	(e.g.,	80%),	whereas	if	it’s	fast,	you	may	want
to	lower	it	(e.g.,	65%).

Many	contemporary	IP	address	management	(IPAM)	tools	offer	capacity	planning	features
and	reporting	functionality	that	can	help	you	track	IP	utilization	more	closely.	We’ll	cover
IPAM	technologies	and	best	practices	in	Chapter	8.



Navigating	the	IPv6	Address	Request	Process
Since	you’ll	either	be	getting	an	IPv6	allocation	from	your	ISP	or	a	RIR,	it’s	probably	a
good	idea	to	explore	the	process	in	either	case	a	bit.	Chances	are	you	(or	someone	in	your
organization)	has	at	least	some	familiarity	with	it	already	(based	on	the	IP	addresses
you’ve	already	requested	and	received).	As	a	result,	you	may	not	have	to	complete	all	the
steps	associated	with	requesting	address	resources.

RIR	Allocation	Request
We’ll	need	some	guidelines	for	procedure	and	policy	when	it	comes	to	getting	IPv6
addresses	from	a	RIR.	As	we’ve	done	for	the	bulk	of	this	chapter,	we’ll	continue	to	pick
on	ARIN	to	provide	these.	The	steps	are	as	follows:

Meet	the	requirements	for	an	End-User	Initial	Assignment
Register	an	Organizational	Identifier	(Org	ID)
Register	Points	of	Contact	(POC)
Complete	and	submit	an	allocation	request
Verify	your	request
Provide	additional	information	(optional)
Certification	of	request	by	a	company	officer
Acknowledge	request	approval
Pay	the	fees
Sign	the	Registration	Services	Agreement
Receive	your	assignment

Please	excuse	a	minor	curmudgeonly	outburst:	ARIN	makes	this	whole	process	as
painless	as	possible	these	days	by	offering	a	handy	web	interface	to	complete	the
registration	and	request	process.	In	my	day,	we	had	to	submit	everything	through	email.	In
the	snow.	Uphill.	Both	ways.

Let’s	take	a	look	at	a	few	screen	shots	of	the	webpages	from	ARIN’s	site	associated	with
the	most	critical	step,	i.e.,	Complete	and	submit	an	allocation	request.	This	walkthrough
will	be	for	an	End-user	IPv6	Request,	something	an	enterprise	that	wanted	PI	space	would
make.[97]

First,	after	logging	into	ARIN	Online,	you’ll	be	directed	to	the	main	screen.	From	there,
select	Manage	&	Request	Resources	from	the	left	column	(Figure	6-4).



Figure	6-4.	ARIN	online	portal	start	page

Next,	the	Number	Resources	page	lists	your	POC(s)	and	Org-ID(s).	In	the	Org-ID	box,
under	Actions,	click	on	the	Request	Resources	link	(Figure	6-5).

Figure	6-5.	ARIN	Number	Resources	page

The	next	page	is	the	Resource	Requests	page.	Under	Resource	Type,	select	End-user	IPv6
Request	(Figure	6-6).



Figure	6-6.	ARIN	Resource	Requests	page

From	there,	the	End-user	IPv6	Assignment	Request	Form	page	comes	up	(Figure	6-7).

Figure	6-7.	ARIN	End-user	IPv6	Assignment	Request	Form	page

The	field	for	step	1	asks	for	the	prefix	length	requested.	This	field	allows	any	value	from
40	to	48	(as	well	as	Unknown/Other).	Depending	on	your	organization’s	size	and
estimated	or	actual	address	plan	requirements,	it’s	possible	that	you	may	want	to	request	a
prefix	larger	than	a	/40	(e.g.,	a	/36	or	/32).	You’ll	have	an	opportunity	to	make	such	a



request	and	justify	it	on	later	screens.

The	field	for	step	2	requires	a	network	name.	This	name	will	be	used	as	a	text	label	(of	up
to	50	letters)	for	the	assigned	address	prefix.	You	could	choose	a	name	that	is
administratively	or	operationally	relevant	if	you	like.	Organizations	often	use	their	name
along	with	a	number	corresponding	to	the	assignment	order,	e.g.,	GLOBOCORP-IPv6-1.

The	field	for	step	3	is	optional,	but	requests	entry	of	the	ASN	that	the	requested	prefix	will
originate	from.	For	most	PI	assignments,	this	will	be	the	ASN	of	the	requesting
organization.	More	rarely,	a	PI	request	that	will	originate	through	one	or	more	upstream
ISPs	could	be	used	here.

The	next	page	requests	corporation	officer	info	(Figure	6-8).	All	resource	requests	through
ARIN	require	that	an	officer	of	the	requesting	organization	attest	to	the	accuracy	of	the
info	submitted	for	the	request.	The	steps	for	fields	4,	5,	and	6	ask	for	the	officer’s	name,
title,	and	email	address	respectively.

Figure	6-8.	ARIN	Corporation	Officer	Info	page

Incidentally,	if	you	don’t	already	have	executive	or	management	buy-in	for	your	IPv6
adoption	initiative	(as	dicussed	in	Chapter	3),	this	requirement	may	provide	an	excellent
excuse	to	line	up	some	facetime	with	high-level	management	to	make	the	case	for	the
organization	to	adopt	IPv6.

Next	we	proceed	to	the	first	of	three	justification	sections	(Figure	6-9)	for	our	request.

The	checkbox	for	step	7	asks	if	you’ve	been	issued	any	IPv4	addresses	on	or	after
December	22,	1997.	If	you’ve	already	received	an	ARIN	end-user	allocation	of	IPv4,	this
helps	justify	one	for	IPv6.



Step	8	asks	for	an	optional	list	of	upstream	providers	and	peers.	Here	you	may	list	the
upstream	networks	that	you	purchase	IP	transit	from	or	that	you	peer	with	at	exchange
points	(or	directly),	e.g.,	“Level	3,”	“ASN3356,”	“6939,”	etc.

The	next	page	continues	the	justification	portion	of	the	request	(Figure	6-10).

Figure	6-9.	ARIN	Justification	page



Figure	6-10.	ARIN	Justification	page	2

The	field	for	step	9	asks	for	an	IPv4	Address	Utilization	Numbering	Topology.	Yes,	you
read	that	correctly:	IPv4.	ARIN	uses	this	information	to	help	validate	the	IPv6	allocation
request.

CAUTION

That	ARIN	wants	to	see	your	IPv4	address	utilization	and	topology	should	not	be	interpreted	to	mean	that	you	should
be	correlating	your	existing	IPv4	address	plan	to	your	shiny	new	IPv6	one.	The	IPv6	address	planning	principles	and
best	practices	we’re	covering	in	this	book	are	better	suited	to	creating	the	right	plan.

Field	9	(along	with	field	11,	covered	next)	is	limited	to	4,000	words.	If	you	need	more
than	that,	you’ll	need	to	upload	a	file	using	the	button	identified	by	10	in	the	above
graphic.

Field	11	(Figure	6-11)	is	arguably	the	most	critical	part	of	the	end-user	allocation	request.
This	is	where	you’ll	outline	your	proposed	IPv6	numbering	scheme.	As	mentioned,	this	is
the	part	of	the	request	process	that	creates	a	bit	of	a	catch-22:	it’s	difficult	to	accurately
gauge	how	much	address	space	we’ll	need	without	a	finished	plan,	yet	it’s	equally	difficult
to	decisively	design	a	complete	plan	without	knowing	how	much	address	space	we’ll	be
starting	with.



Figure	6-11.	ARIN	Justification,	page	2	(lower	half)

To	best	complete	this	field,	we’ll	need	to	make	some	very	general	assumptions	based	on
the	concepts	and	principles	we	learned	in	the	last	chapter.	From	these,	we	can	build	a	plan
outline	that	contains	enough	information	to	complete	our	RIR	(or	ISP	request)	and	get	our
IPv6	addresses.

TIP

A	plan	outline	is	a	high-level	outline	of	a	(typically)	forthcoming	complete	and	operational	IPv6	address	plan	that	is
produced	to	qualify	for,	and	obtain,	an	IPv6	allocation.

The	simplest	estimate	on	which	to	base	our	request	comes	from:

1.	 The	number	of	sites	in	our	organization
2.	 The	number	of	subnets	we’ll	need	per	site

Recall	from	Table	6-1	that	up	to	75%	of	our	total	number	of	sites	will	dictate	the
allocation	we	receive.	Keep	in	mind	also	that	the	75%	threshold	triggers	an	allocation	with
an	additional	4	bits	of	end-user	/48	networks.	As	a	result,	for	the	purposes	of	estimating
whether	a	particular	allocation	will	be	sufficient,	our	confidence	in	the	estimate	might	be
understood	as	inversely	proportional	to	how	close	we	get,	without	going	over,	to	75%.

For	example,	where	our	number	of	sites	puts	us	greatly	under	the	75%	mark	for	any	of	the
rows	in	Table	6-1,	we	should	have	more	confidence	that	our	allocation	will	be	sufficient	to
base	our	operational	address	plan	on.	But	as	we	approach	the	75%	threshold,	recognize
that	going	over	75%	generally	means	that	getting	the	next	largest	allocation	on	the	nibble
boundary	will	give	us	stubstantial	headroom	for	potential	operational	efficiency	and
growth.

The	pages	that	follow	(not	shown)	include	the	last	page	of	the	justification	portion	of	the
request	(with	two	fields	to	be	filled	out	if	you’re	requesting	additional	IPv6	space)
followed	by	a	page	to	enter	any	additional	information	(the	same	4,000-character	limit
applies,	but	as	before,	there	is	the	option	to	attach	a	file).

After	submitting	the	request,	a	ticket	number	is	generated	along	with	a	link	to	the	support
page	(Figure	6-12).

You	can	log	back	in	to	check	the	status	of	your	request	at	any	time.	ARIN	typically



responds	to	requests	within	a	day	or	two.

Figure	6-12.	ARIN	request	submitted	page

ISP	Allocation	Request
The	process	for	requesting	an	IPv6	assignment	from	an	ISP	is	similar	to	the	one	for
requesting	an	allocation	from	a	RIR.

Since	a	request	from	an	organization	to	an	ISP	for	an	assignment	would	typically	be	for	a
PA	assignment,	an	ISP	might	make	certain	assumptions	about	the	organization’s	topology
and	size.	In	any	case,	the	ISP	will	typically	require	you	to	fill	out	a	service	request	form
that	includes	information	about	your	actual	topology	and	IPv6	requirements,	info	such	as:

1.	 Will	you	need	an	IPv6	prefix?
2.	 Is	your	network	multihomed?

a.	 If	so,	what	is	your	AS	number?
b.	 Prefixes	you	plan	to	announce

You’ll	probably	be	using	an	existing	IPv4	connection	and	adding	IPv6	to	it	in	a	dual-stack
configuration.	Otherwise,	additional	information,	such	as	the	circuit	type	for	the	IPv6
connection	and	any	settings	associated	with	it,	will	need	to	be	clarified.

It	should	go	without	saying	that	you	need	to	verify	that	your	ISP	or	IP	transit	provider
supports	IPv6.	If	you	haven’t	done	this	yet,	you	should	do	it	right	away.	Some
organizations	adopting	IPv6	report	difficulty	ordering	IPv6	connectivity	because	not	all
ISPs	or	IP	transit	providers	have	adopted	IPv6	yet	themselves.	If	your	existing	provider
doesn’t	support	IPv6	within	a	timeframe	acceptable	to	your	IPv6	adoption	plans,	you’ll
need	to	begin	to	research	the	requirements	and	costs	of	other	providers	that	can	provide
IPv6	connectivity.



Summary
I’ve	attempted	in	this	chapter	to	demonstrate	that	getting	IPv6	addresses	is	a	perfectly
straightforward	process,	as	long	as	you	know	what	type	of	allocation	you’ll	need	and
where	to	get	it.

Though	policies	for	obtaining	IPv6	addresses	may	vary	from	slightly	from	region	to
region,	one	thing	remains	consistent:	the	bare	fact	of	IPv4	exhaustion	means	that	the	RIRs
have	a	vested	interest	in	facilitating	IPv6	adoption.	This	means	that	any	request	for	IPv6
address	space	backed	up	by	an	address	plan	that	has	demonstrated	need	based	on
operational	best	practice	as	the	requestor	defines	it	stands	a	good	chance	of	seeing	that
request	fulfilled.

Of	course,	not	every	organization	requires	(or	should	receive)	a	PI	allocation.
Organizations	with	a	single	ISP	or	limited	to	one	site	may	conclude	that	a	PA	allocation	is
perfectly	suitable	for	their	current	and	future	operational	needs	and	rate	of	growth.[98]

[89]	They’re	also	responsible	for	coordinating	a	number	of	other	foundational	Internet	technologies,	including	the	DNS
Root,	.int	and	.arpa	domains,	and	protocol	number	assignments.

[90]	RIPE	recently	eliminated	the	multihoming	requirement	for	assignment	of	PI	space	to	organizations.	In	order	to
obtain	address	space	directly,	a	larger	enterprise	may	also	choose	to	become	a	LIR	itself	(by	becoming	a	member	of
RIPE	and	paying	the	associated	fees).

[91]	If	your	imagination	is	stirred	by	the	phrase,	I	humbly	beg	your	pardon	and	offer	my	regrets	that	I	won’t	be	able	to
attend	your	next	get-together.

[92]	Each	RIR	has	its	own	equivalent	of	the	NRPM	available	through	its	website.

[93]	Participation	in	ARIN	policy	discussions	through	their	Public	Policy	Mailing	List	(PPML)	is	open	to	anyone.	It’s	a
great	way	to	get	involved	in	the	Internet	community	(and	an	equally	great	way	to	obliquely	learn	about	the	operational
concerns	around	address	resources	that	impact	network	administrators).

[94]	See	RFC	3194,	The	Host-Density	Ratio	for	Address	Assignment	Efficiency:	An	update	on	the	H	ratio.

[95]	Since	ARIN	only	allocates	along	nibble	boundaries	as	a	matter	of	policy,	this	is	the	allocation	we	would	have
received	anyway!

[96]	Chances	are	if	you’re	only	requesting	IPv6	address	space	for	a	single	site,	you’ll	be	getting	an	allocation	from	your
ISP.

[97]	If	you’re	making	a	request	from	ARIN	for	an	ISP	allocation,	the	process	is	similar.	Where	possible,	modify	the
screen	selections	accordingly.

[98]	Some	single-homed	organizations	may	be	concerned	about	a	greater	likelihood	of	having	to	renumber.	This	could
be	a	consequence	of	changing	ISPs	or	the	frequent	internal	reconfiguration	of	the	network.	With	such	a	concern,	the
deployment	of	ULA	with	NPTv6	(a	configuration	that	is	less	desirable	for	most	networks	due	to	greater	operational
overhead	than	GUA)	may	be	an	option.

http://bit.ly/rfc-3194




Chapter	7.	Creating	an	IPv6	Addressing
Plan



Introduction
In	this	chapter,	we’ll	take	advantage	of	the	topics	we	learned	in	Chapters	4	through	6	to
walk	through	building	from	scratch	a	couple	of	sample	IPv6	address	plans	for	a	(thank
$DEITY)	fictional	company.

We’ll	learn	effective	entry	points	into	our	address	plan	design	that	depend	on	whether	we
want	to	focus	first	on	the	part	of	our	plan	within	a	site	or	the	part	of	the	plan	between	sites.

Along	the	way,	we’ll	explore	in	depth	methods	for	mapping	the	network	topology	into	the
address	plan	—	how,	thanks	to	the	typically	large	size	of	an	IPv6	address	allocation,
subnets	identifying	function	and	location	can	be	derived	from	the	available	bits	(bits	that
were	in	short	supply	in	IPv4).

Finally,	we’ll	look	at	some	of	the	address	planning	considerations	for	network	topologies
that	extend	the	traditional	enterprise	network	in	the	form	of	data	centers,	cloud
deployments,	and	sensor	networks.



Meet	Strangelove	Solutions,	LLC
Strangelove	Solutions	LLC	is	a	boutique	software	and	engineering	firm	specializing	in
doomsday	scenario	and	global	catastrophic	risk	modeling,	as	well	as	deluxe	mineshaft
estates,	for	the	discerning	(and	well-heeled)	doomsday	prepper.

They	have	a	number	of	offices	in	North	America,	including	their	headquarters	campus	in
Damascus,	Arkansas,	and	sales	offices	in	Faro,	North	Carolina	and	Yuba	City,	California
(Figure	7-1).

Figure	7-1.	Strangelove	Solutions	inter-site	topology

The	headquarters	campus	also	includes	a	data	center	(Figure	7-2).

The	design	of	the	network	is	fairly	typical	for	an	enterprise	and	includes	the	following
modules:

Edge
Campus
Data	center
Lab
Infrastructure



Figure	7-2.	Strangelove	Solutions	intra-site	topology

Edge	Network
The	enterprise	edge	is	located	in	building	A	and	consists	of	a	head-end	router	with	a	single
WAN	link	from	their	ISP.	Behind	that,	a	firewall	has	segments	to	the	DMZ	and	to	the
campus	network.

Segments	or	elements	configured	in	the	edge	network	include:

Internet	connectivity	(WAN	to	ISP)
Firewall

IDS
DMZ

Corporate	DNS,	email,	web
VPN	for	remote	access

Campus	Network
The	campus	network	consists	of	a	modified	campus	access-distribution	configuration:	a
distribution	switch	connects	to	the	data	center	and	has	fiber	runs	to	switches	in	buildings
B,	C,	and	D,	and	terminates	VLANs	and	layer	3	for	them.	Building	A	houses	the
management	and	IT	departments	with	around	200	employees	total.	It	also	houses	the	data
center.	Buildings	B,	C,	and	D	each	have	around	50	employees.

The	campus	network	incorporates	several	VLANs	including:

Wired	data



Wireless

Internal
Guest	(spans	the	HQ	site)

VoIP

Lab	Network
The	lab	in	building	D	is	used	for	research	and	software	validation	and	is	operated	by
engineering.	Layer	3/VLAN	termination	is	provided	by	a	distribution	switch	in	that
building’s	primary	wiring	closet.

The	lab	network	includes:

Virtual	environments
Sensor	test	networks

Data	Center	Network
The	data	center	network	uses	a	hybrid	design	that	includes	both	a	fairly	typical	collapsed
core	with	top-of-rack	switches	to	servers,	along	with	a	small	SDN	proof-of-concept
network.

The	data	center	network	includes:

Storage	network
Private	cloud
SDN	components

Infrastructure
As	with	our	inter-site	design,	device	numbering	and	network	management	comprise
functions	that	span	the	headquarters	site.	They	include	such	elements	as:

Loopback	and	management	interfaces
Point-to-point	interfaces
Out-of-band	networks	for	lab	and	data	center
Guest	wireless	networks



Where	to	Start:	Topology	or	Plan?
So	now	that	we	have	a	better	picture	of	the	network	we	need	to	design	an	address	plan	for,
where	do	we	begin?

Recall	from	Chapter	5	that,	at	their	most	essential,	addressing	plans	in	IPv6	are	primarily
about	defining	and	assigning	blocks	of	subnets	based	on	the	structure	of	the	network	or	the
organization.

This	fundamental	concept	provides	at	least	two	possible	entry	points	into	creating	a	design
for	our	(thankfully)	fictional	company:[99]

Derive	an	IPv6	address	plan	structure	from	an	existing	topology
Or	map	a	generic	address	plan	structure	onto	a	topology

Another	way	to	think	of	this	is	that	the	former	is	more	of	a	bottom-up	approach,	while	the
latter	is	a	top-down	one.

Keep	in	mind	that	it’s	perfectly	acceptable	and	actually	quite	common	to	use	both	methods
interchangeably	at	different	stages	of	the	address	plan	design.	Initially,	however,	it’s
helpful	to	pick	one	or	the	other	to	get	started.

And,	of	course,	over	time	the	address	plan	and	actual	topology	will	interact	and	influence
each	other.	For	instance,	using	IP	address	management	practices	and	tools	to	track	subnet
utilization	will	result	in	additional	IPv6	space	being	allocated	(and	already-allocated	space
being	reclaimed).	This	process	will	inevitably	impact	network	planning	and	deployment,
which	will	result	in	changes	to	the	network	topology.[100]



Mapping	Topology	to	Plan	Between	Sites
Which	of	these	two	entry	points	should	we	use	for	our	sample	design?	Well	in	Chapter	5,
we	made	a	distinction	between	inter-site	and	intra-site	architecture	—	something	we’ve
reflected	in	Strangelove	LLC’s	simple	network	diagrams	shown	previously.

Since	there’s	only	one	instance	of	inter-site	topology,	it	might	make	the	most	sense	to
derive	the	initial	part	of	our	IPv6	address	plan	structure	from	that	first	entry	point.	In	other
words,	we’ll	use	the	number	of	sites	Strangelove	LLC	has	to	create	an	inter-site	address
plan	structure.

Recall	also	from	Chapter	5	that	a	site	is	a	logical	concept.	It’s	an	entity	within	our	network
topology	that	has	well-defined	and	well-understood	boundaries.	These	boundaries	are
most	typically	based	on	location,	but	could	also	be	based	on	function	(i.e.,	an	application
or	group	of	users	that	share	a	common	security	or	QoS	requirement).

The	actual	bit	boundary	of	the	/48	is	where	all	of	the	subnets	at	a	particular	location	would
be	rolled	up	(i.e.,	aggregated	or	summarized)	into	that	single	prefix.

In	a	similar	fashion,	the	bit	boundary	of	the	/48	can	be	used	to	enforce	QoS	or	security
policy	for	a	function,	as	we’ve	described	previously.

With	three	sites	(in	this	case,	and	as	is	typical,	the	sites	are	locations),	Strangelove	LLC
would	appear	to	need	at	least	3	/48s.

But	keep	in	mind	we’ve	also	got	a	data	center	at	HQ.	Strangelove’s	somewhat	eccentric
(i.e.,	insane)	management	team	has	decided	that	the	risk	of	nuclear	catastrophe	is	greater
at	their	Damascus,	Arkansas	headquarters.	They’ve	tentatively	decided	to	move	the
existing	data	center	to	one	of	their	regional	offices.	For	maximum	portability,	the	data
center	should	get	its	own	/48.

Strangelove	LLC	is	also	designing	a	private	cloud	service	(aka,	“the	Mushroom	Cloud”)
that	they	hope	to	integrate	with	a	secure	public	cloud	offering	in	the	near	future.	It	seems
prudent	to	allocate	an	additional	/48	for	whatever	the	cloud	architecture	ends	up	looking
like.

Finally,	connectivity	between	sites	is	currently	provided	by	MPLS	VPN,	and	the
associated	inter-site	infrastructure	will	get	a	/48	as	well.

Here’s	a	summary	of	Strangelove	LLC’s	inter-site	topology	for	which	/48	allocations	are
suggested:

HQ
Regional	office	(Faro)
Regional	office	(Yuba	City)
Data-center
Cloud	architecture
Infrastructure

So	even	though	there	are	only	three	main	sites,	a	total	of	6	/48s	will	be	needed.	And	while
3	bits	would	apparently	provide	enough	(i.e.,	8)	/48s,	you’re	hopefully	on-board	with	the
best	practice	of	allocation	along	nibble	boundaries	from	our	earlier	reading.



Thus,	a	/44	would	be	the	minimum	allocation	size	we	should	assume	when	deriving	our
inter-site	address	plan	structure	from	our	actual	topology.

At	this	point,	Strangelove	LLC	hasn’t	requested	a	PI	allocation	from	the	RIR,	so	for	the
purposes	of	planning	and	illustration,	we’ll	use	a	/44	from	the	documentation	range.[101]
Figure	7-3	shows	this	placeholder	/44	prefix	along	with	the	allocations	described	above.

Figure	7-3.	Strangelove	LLC	inter-site	allocations



Mapping	Plan	to	Topology	Within	Sites
As	for	the	second	design	entry	point	(mapping	a	generic	address	plan	structure	onto	a
topology),	such	an	approach	seems	to	be	more	applicable	where	there	are	multiple,	similar
topologies,	and	we	want	to	use	our	address	plan	to	try	to	make	overall	address
management	and	operations	between	sites	as	consistent	as	possible.

So	what	might	a	generic	address	plan	structure	look	like?	Well,	based	on	our	fundamental
address	plan	design	concept,	it	needn’t	be	much	more	initially	complicated	than	groups	of
subnets	hierarchically	arranged.

As	stated,	we’ll	focus	on	the	inter-site	portion	of	the	plan,	i.e.,	the	16	bits	between	a	/48
and	/64.	To	keep	things	as	simple	as	possible,	we’ll	use	one	of	the	subnetting	hierarchies
from	Figure	4-1.

The	first	of	those	subnetting	hierarchies	gives	us	the	most	predictable	allocation	of	the
available	address	space	as	it	allocates	sequentially	on	the	next	available	nibble	boundary:
e.g.,	/48,	/52,	/56,	/60,	and	/64.

Or	to	put	it	another	way:

Each	/48	provides	16	/52s
Each	/52	provides	16	/56s
Each	/56	provides	16	/60s
Each	/60	provides	16	/64s

Figure	7-4	shows	the	relationships	between	the	allocations.

Figure	7-4.	/48	to	/64	in	sequential	nibbles



With	no	more	than	16	elements	or	descriptors	per	level	of	hierarchy,	this	choice	is	also	the
most	manageably	(or,	perhaps,	least	unmanageably)	displayed	as	a	worksheet	excerpt.
(Figure	7-5).

Figure	7-5.	Address	Plan	Worksheet	excerpt

To	begin	to	populate	this	worksheet	using	our	example	organization,	we’ll	refer	back	to
Figure	7-2	to	help	determine	the	appropriate	hierarchy	levels.

It	makes	the	most	sense	to	assign	the	first	level	of	hierarchy	to	the	primary	modules	within
the	site.	(The	sole	exception	would	be	the	data	center	for	which	we	have	already	set	aside
a	/48.)

We	reserve	the	0/52	subnet	and	assign	2001:db8:def1:1000::/52	to	the	campus	network.
The	edge,	infrastructure,	and	lab	networks	get	the	next	three	subnets:	i.e.,	:2000::/52,
:3000::/52,	and	:4000::/52	(Figure	7-6).

Figure	7-6.	Intra-site	worksheet,	level	1

As	the	color	coding	suggests,	the	next	column	of	our	worksheet	corresponds	only	to	the
campus	prefix	we	just	assigned	in	column	1	(2001:db8:def1:1000::/52).	The	campus
network	comprises	(among	other	attributes)	four	buildings.	For	level	2	of	the	intra-site
hierarchy,	each	building	will	receive	a	/56	(Figure	7-7).



Figure	7-7.	Intra-site	worksheet,	level	2

We	again	select	the	first	subnet	(corresponding	to	building	A)	to	populate	the	next	column
in	our	worksheet.	Building	A	has	two	organizational	functions:	Management	and	IT.	Each
will	receive	a	/60	(Figure	7-8).

Figure	7-8.	Intra-site	worksheet,	level	3

In	the	final	column,	each	/60	is	subnetted	to	provide	/64s	for	interface	assignments,
corresponding	to	VLANs	in	this	case	(Figure	7-9).

Figure	7-9.	Intra-site	worksheet,	level	4

We’ve	only	included	one	subsequent	level	of	hierarchy	and	requisite	column	for	the



campus	/52:	i.e.,	Campus	→	Building	A	→	Management/IT	→	Wired,	Wireless,	VoIP.

In	a	fully	documented	plan,	we	would	need	a	column	for	each	subsequent	level	of
hierarchy.	For	example,	the	/56	we	designated	for	building	B	would	have	16	/60s,
corresponding	to	the	organizational	roles	associated	with	it,	i.e.,	marketing	and	sales.	Each
of	these	/60s	would	in	turn	have	16	/64s	available	for	VLAN	definition.

As	you	can	observe,	even	given	the	extra	tidiness	that	nibble	boundaries	provide,	we’re
still	confronted	with	the	challenge	of	how	to	manageably	represent	our	available	and	used
allocations	(something	we’ll	cover	in	more	detail	in	the	next	chapter).

ZERO	SUBNETS	HAVE	A	PROBLEM

The	first	subnet	of	a	group	of	IPv6	subnets	is	always	enumerated	with	a	0.	In	the	instance	where	the	prefix	contains
consecutive	zeros	that	allow	for	prefix	zero	compression,	presentation	inconsistency	results.

For	instance,	as	we	saw	in	Chapter	4	(under	“Visualizing	Hierarchy”),	numerating	/52	subnets	for	2001:db8:1::/48
gives	us:

2001:db8:1::/52	(or,	expanded	for	clarity,	2001:db8:1:0000::/52)

2001:db8:1:1000::/52

2001:db8:1:2000::/52

2001:db8:1:3000::/52…

2001:db8:1:F000::/52

As	evident,	by	the	rules	of	zero	compression,	the	first	subnet	can	legally	be	expressed	in	its	(pardon	my	French)
smooshed	form.

This	can	potentially	confuse	and	cause	problems	for	operational	personnel,	especially	if	they’re	not	paying	close
attention	to	the	CIDR	notation,	since	the	number	of	characters	in	the	prefixes	for	both	the	parent	/48	and	the	first	/52
of	the	enumerated	group	is	the	same:

2001:db8:1::/48

2001:db8:1::/52

One	way	to	prevent	this	confusion	is	to	avoid	assigning	the	zero	subnet:
2001:db8:1::/52	(reserved)

2001:db8:1:1000::/52	(first	assigned)

2001:db8:1:2000::/52

2001:db8:1:3000::/52…

2001:db8:1:F000::/52

Where	we	adhere	to	the	nibble	boundary,	this	approach	has	the	added	benefit	of	having	the	first	subnet	we	assign	to
an	element	be	numbered	1.	Since	this	conforms	to	the	way	normals	typically	enumerate	elements	(e.g.,	1,2,3,…n),	it
can	provide	for	less	confusion	and	more	consistent	operations	and	fault	isolation.



Function	and	Location	Assignment	Revisited
We’ve	now	spent	a	fair	amount	of	time	observing	how	IPv6	subnets	can	be	grouped
together	according	to	some	standard	concepts	and	practices.	These	steps	allow	us	to
arrange	and	assign	subnets	in	ways	that	are	logical	and	consistent	with	our	network
topology.	We’re	able	to	reliably	do	this	because	IPv6	provides	us	with	enough	bits	in	any
typical	allocation	(especially	as	compared	with	IPv4).

Another	advantage	of	this	logical	and	consistent	structure	is	that	we	can	map	it	on	to	our
network	topology	in	a	way	that	best	facilitates	administration	and	operation	of	the	network
by	enabling	one	or	both	of	the	following:

1.	 Prefix	summarization
2.	 Security	or	QoS	policy	enforcement

As	we	discussed	briefly	in	Chapter	5,	this	is	usually	accomplished	by	assigning	our	groups
of	prefixes	to	locations	or	functions	within	the	network	topology.

A	location	typically	corresponds	to	a	part	of	the	network	whose	address	prefixes	will	be
summarized	at	the	boundary	of	that	part.	This	promotes	operational	efficiency	in
providing	a	summarized	prefix	in	the	routing	table,	potentially	reducing	convergence	time
and	preserving	router	resources.

SITE	VERSUS	LOCATION

At	this	point,	you	may	be	asking	yourself	“Well	just	what	the	heck	is	the	difference	between	a	site	and	a	location
anyway?”	It’s	a	fair	question	because	the	distinction	can	be	subtle	(or	nonexistent).

The	simplest	answer	is	that	while	a	site	is	a	/48	(well,	almost	always	a	/48	—	see	below)	and	always	on	a	nibble
boundary,	locations	can	correspond	to	any	size	prefix	in	the	network.

And	to	really	confuse	things,	recall	that	a	site	doesn’t	have	to	be	a	/48.	Since	a	site	is	ultimately	defined	according	to
the	addressing	and	operational	needs	of	the	requesting	organization,	it	could	be	larger	or	smaller.	As	mentioned,	some
ISPs	are	defining	a	site	as	a	home	user’s	cable	modem	and	assigning	it	a	/56.	(Will	256	/64s	will	be	sufficient
addressing	for	a	single	home	network?	Time	will	tell!)

If	that’s	too	abstract	for	your	liking,	it’s	perfectly	appropriate	to	think	of	a	site	as	an	enterprise	campus	with	a	building
on	that	campus	as	a	location.[102]

TIP

Even	where	routing	resources	are	abundant	and	convergence	time	is	not	an	issue,	mapping	location	into	the	address
plan	provides	administrative	logic	that	helps	facilitate	operations.	As	we	saw	with	our	loopback	address	example,
even	addresses	within	a	single	subnet	can	be	logically	encoded	with	location	information	that	can	help	operational
personnel	locate	and	remediate	resources	on	the	network.

IPv6	subnet	assignments	according	to	function	may	correspond	to	roles	that	have	different
security	or	QoS	requirements	and	that	may	span	locations.	This	allows	administrators	to
more	easily	define,	deploy,	and	modify	security	or	QoS	policy.	As	a	result,	the	overall
number	of	ACL	entries	can	be	potentially	reduced	and	ACL	maintenance	can	be	easier	to
accomplish.



CAUTION

Because	there	is	no	subnet	mask	in	IPv6,	any	ultra-granular	ACLs	we	might	have	configured	in	IPv4	(e.g.,	using
wildcard	subnet	masks	to	identify	groups	of	addresses	for	special	QoS	or	security	policy	treatment)	don’t	have	an
equivalent	in	IPv6.	On	the	other	hand,	in	IPv6,	there	should	never	be	a	shortage	of	unique	subnets	to	deploy	for
special	QoS	or	security	policy	treatment.

Because	the	typically	large	scale	of	an	IPv6	allocation	allows	for	potentially	many	levels
of	hierarchy,	either	location	or	function	may	be	mapped	into	any	given	hierarchy	level
within	an	IPv6	address	plan	(something	that	we’ll	show	an	example	of	below).	But
regardless	of	which	is	selected	and	used,	the	significance	of	the	choice	can	be	encoded
into	the	address	prefix	in	all	cases.	And	as	we	learned	in	Chapter	5,	defining	subnets
exclusively	on	nibble	boundaries	increases	the	legibility	of	our	prefixes	in	relation	to	their
function	or	location	assignments.

FLATLAND

As	the	effect	of	Moore’s	law	drives	processor	and	memory	costs	ever	lower,	network	devices	subsequently	become
more	efficient	at	holding	and	processing	network	state	information,	especially	for	typical	LAN-sized	networks.	As	a
result,	routing	convergence	and	packet-switching	performance	can	be	accomplished	with	less	network	segmentation
at	layer	3.

The	resulting	trend	is	toward	flatter	networks,	and	fewer	segments	means	fewer	subnets	and	routes.	Thus,	for	all	but
very	large	enterprise	sites,	it’s	unlikely	that	you’ll	be	doing	much	intra-site	aggregation	or	summarization.	This	fact
would	seem	to	favor	assigning	functional	significance	to	our	IPv6	address	prefixes	over	location	significance.

Enterprise	IT	is	working	to	increase	business	agility	by	deploying	(and	integrating	with)	technologies	like
virtualization,	cloud,	and	SDN.	Support	of	mobile	devices	and	applications	has	increased	manyfold.	These	in	turn
require	more	sophisticated	internal	security	models	that	deemphasize	a	simple	perimeter	model,	leading	to	a	more
confederated	(and	typically	more	effective)	security	policy.

As	a	result,	functional	IPv6	prefix	assignments	may	offer	better	integration	into,	and	support	of,	this	new
environment.

Assigning	Function	and	Location
Now	let’s	take	a	look	at	the	prefixes	we’ve	allocated	for	Strangelove	LLC’s	network	and
observe	what	function	or	location	significance	they	might	receive.

We’ve	already	determined	that	each	of	Strangelove	LLC’s	sites	will	receive	a	/48	(along
with	the	/48s	set	aside	for	infrastructure,	data	center,	and	cloud	integration).	The	entries	in
Figure	7-3	illustrate	how	the	third	hextet	of	the	prefix	provides	location	significance.

These	/48s	can	be	summarized	to	a	/44	for	their	BGP	announcement	to	upstream
provider(s):[103]

2001:db8:def0::/48

2001:db8:def1::/48

2001:db8:def2::/48…

2001:db8:deff::/48

2001:db8:def::/44

Of	course,	since	we’re	using	fewer	than	8	/48s	in	our	original	address	plan,	we	could
summarize	to	a	non-nibble	boundary,	creating	two	summary	prefixes:

2001:db8:def0::/45

2001:db8:def8::/45

This	could	be	useful	if	Strangelove	Solutions	LLC	executes	its	plan	for	acquiring
Pulowski	Preservation	Services,	designers	and	manufacturers	of	“quality”	personal	fallout



shelters.[104]	Having	eight	unused,	contiguous	/48s	(summarized	into	a	contiguous	/45)
would	be	really	handy	if	the	merger	leads	to	any	obligatory	renumbering	of	any	newly
acquired	network	infrastructure.
The	further	subnetting	and	assignment	we’ve	done	within	each	site	will	still	permit	those
subnets	to	be	summarized	at	the	site	level,	potentially	reducing	routing	convergence	time,
as	well	as	keeping	the	number	of	routes	between	sites	to	a	minimum.

Next,	we’ll	drill	down	on	the	headquarters	site,	i.e.,	2001:db8:def1::/48.	Referring	to
Figure	7-9,	we	can	observe	how	mapping	location	and	function	significance	to	the	levels
of	hierarchy	we’ve	defined	for	Strangelove	LLC’s	network	may	be	accomplished	quite
easily	(and	legibly	thanks	to	our	adherence	to	the	nibble	boundary).

Our	first	level	of	hierarchy	includes	the	following	network	modules:

Campus
Edge
Infrastructure
Lab

Based	on	the	fact	that	these	modules	represent	both	separate	layer	3	network	locations,	as
well	as	unique	roles,	they	could	be	assigned	either	functional	or	locational	significance.
And	though	the	modules	are	equally	sized	and	will	be	summarized	to	the	next	level,	they
also	have	differing	security	requirements	in	relation	to	each	other	and	the	Internet.	As	a
result,	the	ability	to	more	easily	determine	security	policy	and	simplify	ACL	entries	may
be	facilitated	by	assigning	functional	significance	to	this	group	of	subnets.

In	general,	which	one	we	assign	depends	on	whether	we’d	need	to	be	able	to	summarize	a
given	group	of	prefixes	up	to	the	next	level	of	hierarchy	or	whether	any	particular	subnet
might	span	multiple	locations	and	require	a	more	elaborate	security	policy	and	ACL
configuration	at	the	primary	hierarchy	level.

As	a	result	of	assigning	functional	significance	to	our	first	hierarchy	level,	we’ll	represent
as	Fs	(for	function)	the	first	four	bits	(and	the	first	hex	character)	of	the	fourth	hextet.

2001:db8:def1:[FFFF	XXXX	XXXX	XXXX]::/52

Thus,	the	individual	/52s	for	each	module	could	be	assigned	across	multiple	locations
within	the	site	while	still	allowing	for	a	centralized	firewalling.

Our	second	level	of	network	hierarchy	in	our	plan	includes	the	campus	buildings:

Building	A
Building	B
Building	C
Building	D

These	buildings	all	share	a	/56	assignment	and	though	not	independently	administered,	the
networks	for	these	buildings	(and	any	buildings	added	later)	can	be	summarized	up	to	the
/52.	As	a	result,	we’ll	represent	the	second	four	bits	as	Ls	(for	location).

2001:db8:def1:[FFFF	LLLL	XXXX	XXXX]::/56

Additional	layers	of	hierarchy	can	be	assigned	function	or	location	significance	in	the
same	fashion.



CAUTION

Where	functional	significance	is	assigned	at	the	top	layer	of	hierarchy	in	order	to	facilitate	security	policy,	it	is
usually	not	possible	to	assign	location	significance	in	order	to	aggregate	subnets	at	a	lower	layer	of	hierarchy.



Addressing	the	Data	Center
While	the	network	topology	for	the	campus	module	is	a	pretty	straightforward	corporate
LAN,	the	data	center	architecture	for	Strangelove	LLC	(along	with	data	center	architecture
in	general)	is	a	little	different.	As	a	result,	we’ll	need	to	come	up	with	a	plan	that	makes
sense	for	it.

Let’s	take	a	closer	look	at	the	data	center	topology	(Figure	7-10).

Figure	7-10.	Strangelove	LLC	data	center:	topology	and	address	plan

Strangelove	LLC	has	what	it	thinks	is	a	pretty	standard	data	center	architecture.



The	campus	core	router	feeds	in	to	two	core	switches	trunked	together.	Two	aggregation
layer	switches	are	fully	meshed	with	the	core	switches.	This	aggregation	layer	terminates
connections	from	top-of-rack	switches.

The	top-of-rack	switches	connect	up	to	servers	via	NIC-teaming.	Functions	provided	by
the	servers	include	web,	storage,	and	database.	All	of	the	links	are	10GbE.

We’ve	allocated	2001:db8:def4::/48	specifically	for	the	data	center,	so	as	with	our	overall
campus	address	plan,	we’ll	focus	on	assigning	the	16	bits	between	the	/48	site-level
boundary	and	the	/64	interface-level	boundary.

The	topology	within	the	data	center	has	a	few	characteristics	that	will	help	guide	our
address	planning	for	it.

The	first	of	these	is	that	the	topology	is	relatively	flat	from	a	layer	3	perspective.	Since
we’ll	need	little	if	any	summarization	below	the	core	level,	it	makes	sense	to	reserve
whatever	number	of	initial	bits	we’ll	need	for	functional	significance.

As	for	the	number	of	bits	we’ll	need	for	our	first	level	of	hierarchy,	the	data	center
currently	supports	three	primary	applications	(i.e.,	web,	storage,	and	database	services),
but	may	add	additional	services	in	the	future.

In	addition,	each	service	cluster	is	separated	at	layer	3	to	support	a	possible	multi-tenancy
architecture.	The	number	of	clusters	per	service	has	been	projected	not	to	exceed	24	for
the	foreseeable	future.

So	to	determine	the	number	of	bits	needed	for	our	first	level	of	hierarchy,	let’s	multiply	the
total	number	of	existing	and	planned	services	requiring	support	times	the	number	of
existing	and	planned	service	clusters.

Services(e+p)	x	Clusters(e+p)	=	8	x	24	=	192

Solving	for	2x	=	192,	where	x	=	number	of	bits	needed,	we	easily	see	that	x	is	between	7
and	8	(since	27	=	128	and	28	=	256).	Since	we	can’t	split	bits,	we’ll	go	ahead	and	round	up
to	8.

So	8	bits	required	for	our	first	level	of	hierarchy	for	the	data	center	/48	would	provide	256
/56s	(which	gives	us	32	clusters	per	service).

Since	we’re	not	worried	about	summarization	below	the	/48	level	and	have	selected
functional	assignment,	we	could	assign	/56s	per	service	per	cluster	in	any	order.	While	this
would	require	the	least	amount	of	planning	(and	eventually	consume	the	highest	possible
quantity	of	available	subnets),	it	might	also	make	any	security	or	QoS	policy	ACLs	longer
than	necessary	(e.g.,	a	single	entry	per	/56	for	a	maximum	of	256	entries).

However,	if	we	group	our	/56s	according	to	their	services,	we	can	make	our	plan	easier	to
administer.

For	example,	since	we	know	we	may	have	up	to	24	clusters	per	service,	it	makes	sense	to
leave	enough	bits	between	services	to	support	sequential	assignment	of	clusters	per
service.

Again,	since	24	isn’t	on	a	power-of-2	network	boundary	(much	less	a	nibble	boundary),
we’ll	need	to	round	up	to	32.



Since	we	know	we	have	three	existing	services	(with	plans	for	no	more	than	five
additional	services	for	a	total	of	eight),	we	could	sparsely	allocate	the	first	3	bits	required
to	define	these	services.	This	would	ensure	that	any	services	we	define	later	would	have	as
many	as	32	/56	subnets	to	sequentially	number	into.[105]

Recall	that	sparse	allocation	is	equivalent	to	bitwise	counting	up	of	the	left-most	bits	for
the	group	of	bits	being	allocated;	in	this	case,	the	next	3	bits	of	2001:db8:def4::/48.
Table	7-1	has	three	columns:	the	first	showing	the	group	number;	the	second,	the	bitwise
counting	up	of	the	first	3	bits	(to	provide	eight	groups	total);	the	third,	showing	the
hexadecimal	equivalent.

Table	7-1.	Sparse	allocation	of	service	groups

Group	# Bits Hex

8 1110XXXX :e000::/56

1 0000XXXX :0000::/56

2 0010XXXX :2000::/56

3 0100XXXX :4000::/56

4 0110XXXX :6000::/56

5 1000XXXX :8000::/56

6 1010XXXX :a000::/56

7 1100XXXX :c000::/56

The	/56s	in	each	group	can	be	sequentially	assigned.

We’ll	use	255	of	the	256	/64s	per	/56	for	VLAN	assignment	within	each	cluster	(again,
tossing	out	the	0	prefix	for	numbering	consistency).



Summary
The	purpose	of	this	chapter	was	to	get	comfortable	with	the	process	of	how	the	IPv6
address	planning	principles	and	methods	we	learned	in	earlier	chapters	are	applied	in	order
to	create	an	actual	IPv6	address	plan.

Hopefully,	at	this	point,	you’re	beginning	to	see	that	for	all	of	IPv6	additional
complexities,	it	has	many	facets,	especially	those	related	to	address	planning,	that	are
actually	quite	simple,	both	to	learn	and	apply.

The	ultimate	goal,	of	course,	is	to	instill	the	critical	knowledge	and	confidence	necessary
to	create	(or	perhaps	effectively	revise)	an	IPv6	address	plan	for	your	organization.

Figure	7-11.	Strangelove	LLC	data	center:	topology	and	address	plan

[99]	Though	if	you’re	bullish	on	the	luxury	doomsday	prep	vertical,	I’m	not	here	to	judge!

[100]	We’ll	cover	IP	address	management	in	more	detail	in	the	next	chapter.



[101]	RFC	3849,	IPv6	Address	Prefix	Reserved	for	Documentation.

[102]	Any	floors	or	departments	might	derive	their	subnets	from	whatever	location	subnet	is	assigned.	In	turn,	subnets
for	functions	such	as	wired	data,	wireless	data,	VoIP,	printers,	sensors,	etc.	would	be	derived	from	the	relevant	floor	or
department	subnet.

[103]	We’ll	take	a	closer	look	at	how	BGP	routing	may	effect	our	IPv6	address	plan	in	Chapter	10.

[104]	I	think	I	know	what	you’re	thinking,	but	Vault-Tec’s	market	capitalization	is	simply	too	large	for	a	minor	player
like	Strangelove	Solutions,	LLC.

[105]	Well,	technically	31,	as	we’ll	avoid	using	the	0	subnet	to	keep	our	cluster	numbering	lined	up	with	the	actual
prefix	number.

http://bit.ly/rfc-3849




Part	III.	Maintenance
The	next	three	chapters	explore	topics	related	to	maintaining	and	future-proofing	your
IPv6	address	plan.	Chapter	8	covers	working	with	IPAM	and	DDI,	two	practices	critical	to
the	management	of	IPv6	networks	and	addressing	plans.	Chapter	9	will	discuss	dealing
with	network	and	Internet	growth	and	change	(and	how	they	are	likely	to	impact	your
address	plan).	Chapter	10	looks	at	the	routing	concepts	you’ll	need	to	keep	in	mind	to
keep	the	IPv6	addresses	of	your	plan	reachable.





Chapter	8.	Working	with	IPAM	and	DDI



Introduction
As	computer	networks	grow	and	become	more	complex,	better	tools	and	methods	are
needed	to	manage	their	resources.	This	is	especially	true	as	we	enter	the	next	stage	of	the
evolution	of	the	Internet	and	networking	technology.	Mobile	devices,	the	Internet	of
Things,	and	cloud	and	virtualization	architectures	all	require	more	efficient	methods	of
provisioning	and	tracking	basic	network	data	like	host	addresses	and	names.	These
methods	work	best	when	they	move	beyond	the	traditional	labor	and	opex-intensive
processes	that	rely	on	manual	changes	or	scripting	(the	latter	usually	only	slightly	more
scalable	than	the	former).	Automation	and	orchestration	of	host	and	node	provisioning
become	critical	elements	in	enabling	improvements	in	business	agility,	SLA	enforcement,
and	reduction	in	IT	costs	in	traditional	networks	(and	the	minimum	requirement	for	many
next-generation	networks).

At	first	glance,	IPv6	would	appear	to	greatly	complicate	this	picture.	The	larger	address
space,	as	well	as	the	more	complex	address	representation,	would	seem	to	necessitate
more	complex	management	requirements.	And	in	the	immediate	term,	managing	IPv6
addresses	does	indeed	introduce	additional	complexity.

But	as	mentioned,	in	the	medium	to	long	term,	IPv6	is	likely	to	facilitate	improved
provisioning	and	address	management	practices,	helping	realize	the	promise	of
automation,	even	in	the	hyper-scale	environments	of	emerging	networks	and	the
applications	they	support.

In	this	chapter,	we’ll	be	focusing	on	tools	that	are	available	today	to	help	effectively
manage	your	IPv6	address	plan	and	begin	to	build	practices	that	will	provide	a	foundation
for	the	provisioning	and	management	requirements	of	tomrrow’s	networks.

We’ll	introduce	current	IPAM	methods	and	tools	(and	the	concepts	they	apply,	including
how	they	differ	from	IPv4	to	IPv6),	and	then	expand	our	discussion	to	include	DDI	(DNS,
DHCP,	and	IPAM)	functionality	that	exists	to	facilitate	provisioning	of	hosts	and	nodes
through	better	management	of	address	assignment,	tracking,	host	naming,	etc.	(You	might
think	of	DDI	as	IPAM	on	steroids.)

Finally,	we’ll	examine	the	likely	future	of	IPAM	and	DDI	in	the	context	of	managing	the
address	and	naming	data	for	emerging	networks	like	SDN,	cloud	and	virtualization,	IoT,
and	mobile.



IP	Address	Management
Let’s	begin	our	discussion	of	IPAM	with	a	basic	definition:

IP	Address	Management	(or	IPAM)	is	the	collection	of	practices	and	tools	required	by	an
organization	to	effectively	manage	their	IP	address	resources.	It	includes	allocating,
administering,	reporting,	and	tracking	of	IP	addresses	along	with	the	associated	network
devices	and	associated	data	(such	as	DNS	and	DHCP).[106]

IPAM	as	a	Cornerstone	of	Network	Management
Before	we	dig	in	to	what	IPAM	practices	and	tools	are	composed	of,	let’s	examine	some
of	the	concepts	that	IPAM	is	based	on.

At	its	most	basic,	IPAM	(along	with	DNS	and	DHCP)	is	merely	one	facet	of	network
management	as	a	whole.	But	if	you	consider	the	role	it	plays	in	keeping	devices	properly
addressed	(and	users	online	with	access	to	the	services	and	applications	they	rely	on),	it
becomes	more	evident	that	effective	IP	address	management	is	critical	to	effective	overall
management	of	networks.

Far	too	often,	in	many	organizations,	IPAM	as	a	formal	element	of	network	management
is	given	short	shrift	or	overlooked	entirely.	Instead	of	being	approached	with	the	same
administrative	rigor	and	operational	zeal	as,	say,	keeping	routers	and	switches	online,	it	is
relegated	to	ad-hoc	processes	(nonstandardized	scripting)	and	inadequate	tools	(e.g.,
spreadsheets	or	text	files).

The	proof	of	this	lies	in	a	simple	test:	let’s	suppose	you	were	asked	to	go	generate	a	report
showing	how	your	address	space	is	allocated	or	assigned	along	with	perhaps	what	hosts
are	currently	online	and	at	what	addresses,	how	quickly	and	easily	could	you	produce	one?

Or	to	put	it	slightly	differently:	if	your	manager	came	to	you	tomorrow	and	tasked	you
with	integrating	the	network	of	a	new	merger	or	acquisition,	how	much	time	and	energy
would	you	need	to	spend	accounting	for	what	IP	space	is	currently	allocated?	Or	where
and	how	much	additional	space	you	might	need?	Or	even	what	is	the	most	proper
allocation	to	assign	any	new	space	from?

At	the	least,	of	course,	you’d	muddle	through.	But	the	inordinate	energy	required	by	many
organizations	to	track	the	basic	yet	essential	resource	of	IP	addressing	creates	an	inevitable
opportunity	cost	in	the	form	of	cycles	that	could	(and	should)	be	better	applied	to	other	IT
tasks	and	projects.	Ultimately,	there	can	be	little	if	any	business	agility	without	the
requisite	agility	in	the	IT	network	and	organization.	Big	bets	on	cloud,	virtualization,	and
SDN	are	all	proof-positive	of	this.

Why	More	Than	1.8x1019	Addresses	Aren’t	a	Substitute	for	Proper	IPAM
Perhaps	you’re	thinking	the	vast	scale	of	IPv6	eliminates	(or	lessens)	the	importance	of
IPAM.	After	all,	the	persistent	struggle	in	IPv4	to	find	a	few	more	addresses	or	another
contiguous	subnet	is	merely	a	function	of	the	scarcity	of	individual	public	IPv4	addresses
(or	subnets	of	private	ones).	When	the	next	project	or	department	head	sidles	up	with	their
proverbial	bowl	emptied	of	IP	addresses	or	prefixes	and	asks	“Please,	sir,	I	want	more”
wouldn’t	we	be	able	to	just	slop	another	/64	or	/48	into	it,	harrumph,	and	say	“There.	Go



away.”

There	are	at	least	a	couple	of	reasons	why	this	isn’t	the	case.

For	one	thing,	remember	that	we’re	still	going	to	need	IPv4	addresses	for	the	foreseeable
future.	In	fact,	managing	IPv4	space	can	become	more	critical	than	ever	for	some
organizations	as	they	adopt	IPv6.

For	example,	how	quickly	are	you	using	up	your	remaining	IPv4	resources	and	will	you
have	enough	addresses	to	keep	up	with	the	demands	of	legacy	or	new	projects?	What
about	continuing	or	emerging	trends,	like	the	flood	of	mobile	devices	connecting	to	the
network?

Without	an	effective	IPAM	practice	and	proper	IPAM	tools	in	place,	it	will	be	much	more
difficult	and	time-consuming	to	generate	capacity	reports	and	track	consumption	of	IPv4
addresses	in	order	to	determine	where	and	when	IPv6	deployment	might	be	mandatory.

Regardless	of	how	we	might	have	tracked	(or	failed	to	track)	IPv4,	ad-hoc	and	primitive
IPAM	methods	that	might	marginally	work	with	the	legacy	protocol	are	entirely	unsuitable
for	IPv6.

We’ve	demonstrated	that,	despite	its	potential	length	and	its	use	of	hexadecimal,	the
presentation	of	an	IPv6	address	needn’t	automatically	be	unwieldy	and	thus	more	prone	to
transcription	error.	But	the	fact	remains	that	any	hosts	or	nodes	utilizing	addresses	that
require	EUI-64	presentation	or	privacy	extensions	are	indeed	vulnerable	to	such	errors,
especially	in	the	host	ID	of	the	address.

To	get	some	idea	of	the	potential	for	transcription	errors,	take	a	look	at	Table	8-1.	It
depicts	a	short	sample	list	of	IPv6	addresses,	derived	from	either	EUI-64	or	temporary
address	algorithms.



Table	8-1.	A	sample	list	of	EUI-64/temporary	IPv6	addresses

Host IPv6	address

1 2001:db8:abba:2112:13e9:5aff:fe39:bbe7/64

2 2001:db8:abba:2112:23e5:3cff:fe07:1f1a/64

3 2001:db8:abba:2112:c93d:32ff:fe2f:1196/64

4 2001:db8:abba:2112:6b27:73ff:fe68:51a0/64

5 2001:db8:abba:2112:40d5:97ff:fee5:6846/64

6 2001:db8:abba:2112:4b39:2aff:fee1:2bc7/64

7 2001:db8:abba:2112:34cd:d7ff:fe31:d85b/64

8 2001:db8:abba:2112:08a8:8bff:fe23:db50/64

9 2001:db8:abba:2112:9ab3:12ff:fed1:c1af/64

10 2001:db8:abba:2112:3a53:d6ff:fe7e:4f46/64

IPAM	Policy
Like	security	policy,	IPAM	lends	itself	well	to	the	application	of	a	policy	cycle.	At	its	most
essential,	a	policy	cycle	is	a	process	whereby	the	application	and	effectiveness	of	an
administrative	policy	is	tested	against	the	environment	the	policy	applies	to,	and	then
updated	and	validated	at	regular	intervals.

For	instance,	in	IP	address	management,	following	the	design	of	the	address	plan	(i.e.,
policy	formulation)	and	the	allocation	and	assignment	of	addresses	(i.e.,	policy
application),	continuous	monitoring	of	the	state	of	the	network	addressing	through	IPAM-
focused	tools	and	software	allows	the	original	plan	to	be	kept	current,	inventory	tracked,
and	capacity	planned	(policy	enforcement	and	update)	and	any	failures	to	be	isolated,
summarization	maintained,	etc.	(policy	validation	and	monitoring).	Figure	8-1	illustrates
this	process	cycle.

With	the	right	tools	in	place,	the	policy	in	the	form	of	an	address	plan	can	be	reviewed	and
validated	at	any	time	through	reporting	that	accounts	for	the	current	allocation	and
assignment	of	addresses.



Figure	8-1.	IPAM	policy	cycle

IPAM	Features
There	are	a	number	of	IPAM	providers,	but	the	tasks	performed	by	their	software	and
tools	are	generally	similar.	Here’s	a	list	of	possible	features	along	with	a	brief	description
for	each.	An	assessment	of	the	overall	quality	of	an	IPAM	system	can	be	based	on	how
many	of	these	features	are	implemented	(as	well	as	the	general	depth	and	ease-of-use	of
said	features).

Later	in	the	chapter,	we’ll	take	a	look	at	what	some	of	these	features	actually	look	like
when	configured	in	an	actual	IPAM	system.

Display	of	IPv6	address	space

There	are	different	formats	for	displaying	the	IPv6	address	space	under	management,
and	a	good	IPAM	system	will	offer	more	than	one	view.	Common	views	are	a	graphical
map	of	the	network	space	(Figure	8-2),	a	list,	or	a	table	view.



Figure	8-2.	IPv6	net	map,	Infoblox	IPAM

The	parent	network	(aka,	supernet	or	network	container)	is	identified	by	the	red	box
marked	1	with	the	value	2001:db8:def0::/44.	This	is	the	level	of	hierarchy	the	net	map
illustrates	and	contains.

The	box	marked	2	shows	the	entire	range	of	addresses	possible	at	this	level	of	hiearchy:
2001:db8:def0:0000:0000:0000:0000:0000	to	2001:db8:deff:ffff:ffff:ffff:ffff:ffff

The	arrow	labeled	3	points	to	a	network	container,	similar	in	role	to	the	formal	definition
of	an	allocation:	additional	subnets	within	it	will	be	assigned	later.	Note	that	the	arrow	is
pointing	to	the	fifth	network	container	on	the	network	map,	which	would	correspond	to
the	subnet	2001:db8:def4::/48.

4	is	pointing	to	the	second	network	container,	as	well	as	a	mouse-over	box	that	shows
some	relevant	detail	for	that	allocation.	This	information	includes	the	network
(2001:db8:def1::/48);	the	number	of	networks	the	block	contains	(1	block);	the	start
address	(2001:db8:def1::	or	2001:db8:def1:0000:0000:0000:0000:0000);	the	end
address	(2001:db8:def1:ffff:ffff:ffff:ffff:ffff);	and	finally,	the	percentage	of
IPAM	utilization	for	that	container	—	currently	at	31.2%	because	we’ve	allocated	and
assigned	some	subnets	within	this	block.	The	black	dots	within	the	block	represent	these.

Finally,	5	points	to	the	entirety	of	the	unallocated	space	in	our	top-level	allocation.	Since
we’ve	only	allocated	6	of	the	available	16	/48s,	this	leaves	10	/48s	unallocated.	Note	that
the	unallocated	space	doesn’t	correspond	to	the	two	most	logical	ways	we’d	be	likely	to
represent	it	—	either	as	10	individual	/48s	or	as	networks	aggregated	to	the	greatest	extent
possible	(i.e.,	2001:db8:def6::/46	and	2001:db8:def8::/45).



A	list	or	table	view	presents	the	defined	subnets	as,	well,	a	list	or	table	(Figure	8-3).

Figure	8-3.	IPv6	list	view,	Infoblox	IPAM

Once	again,	the	parent	network	(aka,	supernet	or	network	container)	is	identified	by	the
red	box	marked	1	with	the	value	2001:db8:def0::/44.	This	is	the	level	of	hierarchy	the
list	illustrates	and	contains.

The	column	titled	Network	(indicated	by	the	number	2)	lists	the	6	/48	prefixes	we’ve
defined	from	our	parent	allocation.

The	next	column,	Comment	(3),	offers	the	site	descriptions	corresponding	to	each	prefix.

IPAM	Utilization	(4),	shows	the	number	of	subnets	defined	within	that	network	container
as	a	percentage.

Site	(5),	provides	a	descriptor	for	the	generic	type	of	site	(e.g.,	Headquarters	Regional
Office,	etc.).	These	extensible	attributes,	as	they	are	referred	to	in	the	Infoblox	IPAM
system,	offer	a	way	of	finding,	grouping,	and	filtering	IPAM	elements	and	objects	based
on	common	or	user-defined	classes.	Column	6,	Region,	is	another	of	these	attributes	—	in
this	case,	NA	for	North	America.

Another	format	for	displaying	IPv6	networks	is	the	tree	(or	outline)	view	(Figure	8-4).



Figure	8-4.	IPv6	tree	(or	outline)	View

This	view	is	effective	at	immediately	conveying	the	network	hierarchy,	as	well	as	the
relationship	between	the	various	hierarchy	levels.

Network	aggregation

The	ability	to	combine	smaller	prefixes	into	larger	ones,	for	example:
2001:db8:abba:2000::/52

2001:db8:abba:3000::/52

can	be	aggregated	to:

2001:db8:abba:2000::/51

Network	splitting

The	ability	to	split	a	larger	prefix	into	two	or	more	smaller	prefixes	is	typically
supported.	For	example:

2001:db8:abba:2000::/51

can	be	subnetted	to:

2001:db8:abba:2000::/52

2001:db8:abba:3000::/52

or

2001:db8:abba:2000::/51

can	be	subnetted	to:

2001:db8:abba:2000::/53

2001:db8:abba:2800::/53

2001:db8:abba:3000::/53

2001:db8:abba:3800::/53



NOTE

Network	resizing	is	a	common	task	in	IPv4	address	management,	due	to	the	need	to	right-size	subnet	assignments	in
order	to	conserve	address	space.	Because	of	the	astronomical	number	of	hosts	in	a	typical	IPv6	prefix	assignment,
network	resizing	is	not	generally	used.

Measuring	consumption	of	IPv6	address	resources

An	IPAM	system	should	offer	the	ability	to	measure	and	track	the	consumption	of
available	IPv6	address	resources	—	but	measured	in	subnets	rather	than	hosts.	Recall
that	we’re	generally	not	concerned	with	tracking	host	address	consumption	in	IPv6.
This,	in	combination	with	reporting	features,	allows	for	better	capacity	planning	and
overall	network	management.

Reporting

A	critical	benefit	of	an	IPAM	system	is	the	ability	to	generate	reports	that	capture	IPv6
network	and	subnet	inventories	for	use	in	IT	planning	and	strategy.	Any	major	network
numbering	tasks	or	projects	brought	about	by	organizational	change	can	be	more
effectively	managed	given	the	data	that	an	IPAM	system	can	provide.	Address	and
capacity	planning	that	reports	provide	can	be	correlated	with	existing	or	planned
architectures	to	determine	if	any	need	for	additional	addressing	exists.

IPv6	address	plan	design

An	IPAM	system	certainly	seems	like	a	logical	setting	in	which	to	build	an	IPv6	address
plan.	Application	of	address	planning	principles	and	best	practices	can	be	combined
with	the	IPAM	system’s	ability	to	display	allocations	and	assignments	according	to
organizational	hierarchy,	both	within	and	between	sites.	Initial	planning	can	be	iterated
before	deployment	begins,	making	the	ultimately	deployed	plan	much	more	ideal	and
ensuring	that	the	overall	allocation	size	is	the	right	one	(i.e.,	in	most	cases,	large
enough).

RIR	registration	updating

Since	more	end-user	organizations	and	enterprises	are	obtaining	IPv6	allocations
directly	from	the	RIRs,	they’ll	need	to	abide	by	the	same	rules	and	regulatory
requirements	that	ISPs	and	LIRs	do.	In	most	cases,	this	additional	administrative	burden
is	very	light	since	organizations	outside	of	ISPs	seldom	assign	networks	from	their	own
allocation	to	businesses	or	entities	under	independent	management.	These	kinds	of
assignments	require	updates	to	the	Shared	Whois	Project	or	the	Referral	Whois
database	and	having	an	IPAM	system	that	can	track,	and	even	push,	updates	can	be
useful.

Policy	compliance

An	IPAM	system	tracking	address	resource	can	make	it	easier	to	validate	that	new	or
ongoing	addressing	assignments	will	comply	with	existing	security,	SLA,	or	routing
policy	requirements	(such	as	integration	with	firewall	and	QoS	ACLs,	as	well	as	routing
subnet	aggregation).

Integration	with	DNS	and	DHCPv6



Integrated	management	of	DNS	and	DHCPv6	is	always	present	in	IPAM	tools	that	are
part	of	a	larger	DDI	system.	We’ll	cover	this	in	more	detail	in	the	next	section.



Example:	Using	IPAM	Software
Let’s	take	a	look	at	how	one	DDI	vendor	accomplishes	three	basic	IPAM	tasks	using	their
web	interface.[107]	This	example	is	provided	by	Infoblox	vNIOS	software	(version	6.10.0).
The	three	tasks	are:

1.	 Adding	an	IPv6	prefix	(in	this	case	a	site	/48)
2.	 Splitting	the	IPv6	prefix	into	/52s	for	assignment
3.	 Creating	reverse-mapped	DNS	zones	for	the	prefixes

Adding	an	IPv6	Prefix
After	logging	into	the	vNIOS	web	interface,	users	are	presented	with	an	IPAM	tasks
dashboard	(Figure	8-5).

Figure	8-5.	Infoblox	vNIOS	IPAM	Tasks	dashboard

Several	common,	predefined	tasks	are	offered.	We	simply	want	to	add	an	IPv6	network.
After	selecting	the	Add	Networks	link,	a	wizard	opens	(Figure	8-6).

On	this	screen,	we	first	select	the	protocol	(1),	and	then	set	the	number	of	bits	in	the
network	ID	(2),	before	finally	entering	the	allocated	prefix	(3);	in	this	case,
2001:db8:2112::/48.

After	a	few	additional	steps,	the	network	appears	in	the	main	IPAM	Data	Management
screen	(Figure	8-7).



Figure	8-6.	Add	Networks	wizard

Figure	8-7.	IPv6	Network	added



Splitting	an	IPv6	Prefix
After	some	additional	design	and	address	planning,	we	decide	that	we’re	going	to	use	the
next	4	bits	for	our	first	level	of	hierarchy.	Theoretically,	we	could	use	the	same	procedure
above	to	create	the	16	resulting	/52s,	but	any	good	IPAM	program	will	allow	us	to	split	an
allocation	(provided	the	bits	feasible	for	the	desired	subnetting	are	not	already	in	use).

Also	in	Figure	8-7,	notice	that	off	to	the	right	of	our	highlighted	network,	we	have	an
option	to	Split	the	selected	network.

Once	we	click	on	Split,	a	new	wizard	opens	(Figure	8-8).

Figure	8-8.	IPv6	split	network

Here,	we	first	specify	the	number	of	bits	the	subnets	we’re	creating	with	the	split	function
should	have	(4),	and	then	enter	the	subnet	from	which	the	subnets	are	to	be	created	(5)
(still	our	original	assignment	of	2001:db8:2112::/48).

Were	we	to	click	OK	at	this	point,	our	16	/52s	would	be	created	—	something	we	could
easily	verify	(Figure	8-9).



Figure	8-9.	IPv6	—	16	newly-created	/52s

Creating	Reverse-Mapping	DNS	Zones
Instead	of	clicking	OK,	however,	we	typically	would	want	to	check	the	Automatically
create	reverse-mapping	zones	checkbox	first.	When	checked,	this	does	exactly	what	it
says	and	creates	reverse	DNS	zones	for	each	new	subnet.

Next,	we’ll	verify	our	reverse	zone	files	were	created	for	each	associated	/52	prefix	by
navigating	to	the	DNS	tab	in	the	vNIOS	web	interface.	Here	we	see	the	individual	zone
entries	for	each	generated	/52	in	their	proper	ip6.arpa	format	(Figure	8-10).



Figure	8-10.	Auto-generated	reverse	DNS	zones

We’ve	just	observed	one	of	the	key	advantages	of	working	with	a	DDI	system.	What
would	have	been	the	labor-intensive	creation	of	16	reverse	zone	files	is	instead	painlessly
automated.	And	since	the	repitition	(and	drudgery!)	associated	with	this	type	of	task	often
leads	to	the	introduction	of	errors,	not	to	mention	the	requisite	time	required	to	find	and
fix	them,	additional	time	and	effort	is	conserved.[108]



DDI:	IPAM	with	200%	More	Goodness
Based	on	the	acronym,	IPAM	is	obviously	a	component	of	DDI	—	yes,	it’s	an	acronym
nested	within	an	abbreviation	(where	will	the	madness	end?).	And	as	you	might	suspect,
although	all	DDI	includes	IPAM,	not	all	IPAM	includes	DNS	and	DHCPv6.

But	some	of	the	tasks	we	just	listed	as	recommended	or	required	for	effective	IPAM	will
only	be	possible	where	IPAM	itself	is	integrated	with	DNS	and	DHCPv6.	And	while	we
can	certainly	accomplish	rudimentary	IPAM	with	legacy	methods	and	tools,	without	said
integration	of	DNS	and	DHCPv6	into	IPAM,	more	complex	automation	and	network
control	tasks	will	only	be	possible	through	complicated	scripting	or	API	programming.

Indeed,	once	we	start	looking	at	best	practices	for	IPAM	policy,	the	integration	of	DNS
and	DHCPv6	becomes	essential.

NOTE

The	market	view	of	DDI	is	perhaps	best	encapsulated	by	Gartner	(who,	incidentally,	coined	the	DDI	abbreviation	in
the	first	place):	“Infrastructure	and	operations	personnel	can	use	DNS,	DHCP	and	IP	address	management	solutions
to	improve	network	availability,	reduce	operational	expenditure,	and	simplify	and	streamline	administration	of	critical
infrastructure.”[109]

One	view	of	IPAM	is	that	it	helps	provide	proper	lifecycle	management	of	IP	addresses.
But	since	actual	hosts	(presumably	with	users	running	applications)	are	not	only	using	but
dependent	on	both	address	and	name	resources,	DDI	may	be	similarly	understood	as	a
critical	part	of	the	lifecycle	management	of	a	given	host.

At	a	high-level,	this	process	isn’t	significantly	different	for	a	host	with	IPv6	enabled.	But
the	configuration	of	any	DDI	solution	will	require	additional	steps.

We’ve	already	looked	at	examples	of	how	IPAM	might	be	configured.	We’ll	soon	explore
what	IPv6	DNS	and	DHCPv6	configuration	might	look	like	using	DDI.	But	first,	let’s	take
a	look	at	some	of	the	operational	challenges	of	each.



Managing	DHCPv6	and	IPv6	DNS
If	you’ve	managed	an	enterprise	network	(or	any	network)	that	hosts	periodically	connect
and	disconnect	from,	you’re	already	intimately	familiar	with	how	DHCP	and	DNS
facilitate	operations	by	automating	both	address	and	name	assignment	in	IPv4	(as	well	as
additional	information	about	the	network	in	options	provided	to	the	host	by	the	DHCP
server).	In	fact,	it’s	safe	to	argue	that	the	recent	Bring	Your	Own	Device	(BYOD)
phenomenon,	driven	by	the	explosion	of	personal	mobile	devices	such	as	smartphones	and
tablets	brought	into	the	workplace,	would	be	throw-up-your-hands-and-start-your-new-
life-as-a-hermit-in-the-woods	unmanageable	without	at	least	DHCP	and	DNS	(to	say
nothing	of	IPAM	or	DDI).

DHCPv6	and	IPv6	DNS	differ	enough	from	their	counterparts	in	IPv4	that	operational
benefits,	as	well	as	challenges,	are	the	result	(with	DHCPv6	arguably	facing	the	most
challenges	of	the	two).	While	many	of	these	challenges	are	at	least	partly	met	by	the	right
DDI	solution,	protocol	and	operational	standards	are	perhaps	not	yet	mature	enough	to
ensure	that	all	of	them	will	solved	by	a	DDI	solution	alone.



DHCPv6	Basics
Auto-addressing	in	IPv6	can	be	accomplished	using	stateful	DHCPv6,	stateless	DHCPv6
(a	combination	of	SLAAC	and	DHCPv6),	and	plain	old	SLAAC.	In	stateful	DHCPv6,	the
server	provides	an	IPv6	address	to	the	host.	By	comparison,	in	stateless	DHCPv6,	the	host
uses	SLAAC	to	autoconfigure	an	address	while	a	DHCPv6	server	provides	options.

With	either	stateful	or	stateless	DHCPv6,	the	server	provides	additional	options	to	the
host,	including	DNS	server	and	search	domain	information.	Also,	stateful	and	stateless
DHCPv6	both	rely	on	RAs	from	one	or	more	routers	to	provide	default	gateway
information.	And	depending	on	which	mode	is	selected,	deploying	either	requires	a
specific	router	configuration	on	the	interface	leading	to	the	relevant	link.

As	far	as	which	of	these	auto-addressing	methods	you	should	select,	that	will	depend	on
the	particulars	of	your	deployment	(and	may	vary,	depending	on	what	part	of	the	network
you’re	addressing).

In	IPv4	DHCP,	the	only	time	you	typically	need	to	touch	the	router	configuration	is	if
you’re	configuring	a	DHCP	relay	helper	address.	In	DHCPv6,	however,	you	always	have
to	set	the	proper	router	advertisement	flags,	depending	on	which	auto-address
configuration	method	you’re	using.	Figure	8-11	shows	the	proper	settings	and	the
resulting	differences	in	address	configuration.[110]

Figure	8-11.	SLAAC,	stateful	and	stateless	DHCPv6	comparison

When	IPv6	is	enabled	on	a	router	interface,	the	default	flag	settings	are	shown	in	Table	8-
2:

Table	8-2.	Default	router	interface	RA	flags

RA	flag Setting

O 0

A 1

M 0

As	you	can	see	from	the	above	table,	these	settings	correspond	to	SLAAC	as	the	auto-
address	configuration	method.	Setting	the	flags	for	stateful	DHCPv6	is	relatively	easy,
provided	you	know	the	proper	router	configurations.	Figure	8-12	shows	the	appropriate
settings	for	Cisco	IOS.



CAUTION

As	you	might	imagine,	in	LAN	environments	where	some	combination	of	stateful	DHCPv6,	stateless	DHCPv6,	and
SLAAC	are	deployed	on	the	same	link,	host	address	assignments	and	resulting	host/network	interaction	can	be
unpredictable	and	more	difficult	to	manage.[111]	To	the	extent	possible,	choosing	a	single	host	platform	and	auto-
addressing	method	per	link	will	minimize	any	such	operational	challenges.

Figure	8-12.	Cisco	RA	flag	configuration

Configuring	DHCPv6	in	DDI
Now	let’s	take	a	look	at	configuring	stateful	DHCPv6,	again	using	the	Infoblox	DDI
solution	(vNIOS	software,	version	6.10.0).	Figure	8-13	provides	a	view	of	the	DHCP
configuration	tab	(1).



Figure	8-13.	DHCPv6	configuration,	network	selection

The	networks	listed	here	(e.g.,	2001:db8:def1:1110::/64,	2001:db8:def1:1111::/64,	etc.)
appear	automatically	based	on	the	same	networks	being	defined	in	our	IPAM	example
earlier	in	the	chapter.	(2)	indicates	the	network	that	we	will	select	to	configure	a	sample
DHCPv6	range.	Clicking	on	Add	(3)	opens	a	wizard	to	define	this	IPv6	range.

Figure	8-14	jumps	to	the	second	screen	of	the	wizard,	where	we	can	see	our	selected
network	(4),	as	well	as	the	fields	to	define	the	(inclusive)	start	and	end	addresses	of	our
DHCPv6	range	(5).	You’ll	also	notice	that	we	have	the	option	of	doing	prefix	delegation
(by	itself	or	along	with	an	address	from	the	defined	range).	There	are	also	fields	here	to
name	this	particular	range	(and	provide	a	comment	if	we	need	to).



Figure	8-14.	DHCPv6	configuration,	range	definition

After	some	additional	steps,	including	restarting	the	DHCP	service,	the	DHCPv6	server	in
Infoblox	NIOS	begins	assigning	IPv6	addresses	from	the	defined	range.	Figure	8-15
shows	a	small	sample	of	client	leases.

Figure	8-15.	DHCPv6	configuration,	acquired	leases

By	default,	the	lease	information	(6)	includes	the	assigned	address,	the	type	of	assignment
(a	DHCPv6	lease,	in	this	case,	as	compared	with,	say,	a	fixed	address),	the	hostname
provided	by	the	client,	and	the	DHCP	fingerprint	identifying	the	device	type	and	OS.

Figure	8-16	illustrates	that,	if	we	need	or	want	to,	we	can	get	a	more	detailed	look	at	the
lease	info.



Figure	8-16.	DHCPv6	configuration,	lease	detail

We	can	accomplish	this	by	selecting	the	checkbox	(7)	next	to	a	lease	we’re	interested	in
(e.g.,	the	address	2001:db8:def1:1111::12d)	and	then	selecting	Lease	Details	(8).	The	IPv6
Lease	Information	window	that	appears	contains	lots	of	useful	info	(in	addition	to	the
hostname	and	DHCP	fingerprint	from	the	previous	screen),	such	as	the	DUID,	the	IAID,
the	preferred	lifetime,	lease	end	and	start	times,	lease	state,	and	the	IPv6	address	of	the
DHCPv6	server	that	provided	the	lease.

Figure	8-17	shows	the	screen	accessed	by	clicking	on	DNS	(9)	→	Zones	→	Records.

Here,	we	can	see	the	dynamic	DNS	records	(10)	that	have	been	generated	by	the	DHCPv6
server	and	sent	to	the	DNS	server.	Both	the	DHCPv6	server	and	DNS	server	may	exist	(as
they	do	in	this	example)	within	a	single	instance	of	a	virtual	NIOS	or	physical	Infoblox
appliance.



Figure	8-17.	DDNS	records	from	DHCPv6	leases

DHCPv6	Challenges
Most	enterprise	networks	(along	with	any	network	environment	where	tighter	control	over
hosts	is	desired)	choose	to	run	DHCPv6	instead	of	SLAAC.	Based	on	our	knowledge	of
how	SLAAC	operates,	the	reason	for	this	choice	should	be	evident.	For	one	thing,	as	long
as	the	router	is	sending	appropriately	configured	RAs,	SLAAC	allows	the	host	to
autoconfigure	an	address	and	access	the	network.

Many	IT	network	administrators	have	already	encountered	this	scenario	on	their	corporate
LANs,	given	that	most	versions	of	modern	OSes	are	installed	with	IPv6	on	by	default.

This	has	led	to	a	regression	in	IPv6	adoption,	where	these	administrators	faced	with	little
or	no	IPv6	expertise	and	an	uncertain	security	environment	opt	to	disable	IPv6	altogether
on	host	OSes.

Obviously,	we	want	to	be	able	to	deploy	IPv6	in	a	controlled	manner	and	maintain	the
goals	of	our	security	policy.	But	disabling	IPv6	on	hosts	can	cause	unintended
consequences.	On	recent	Microsoft	Windows	versions	(including	7	and	Server	2012),
IPv6	is	required	to	support	features	like	Windows	Server	Clustering	and	applications	like
Direct	Access.[112]



TIP

We	don’t	have	to	disable	IPv6	on	host	OSes.	Indeed,	it’s	possible	to	reasonably	secure	your	LAN	while	phasing	in
IPv6	by	adopting	some	simple	practices:

Ensure	that	only	router	interfaces	to	links	participating	in	phased	IPv6	adoption	are	configured	to	send	RAs.
Where	such	interfaces	are	configured,	make	sure	that	the	RAs	have	the	proper	flags	set	for	the	desired	choice	of
auto-addressing	(stateful/stateless	DHCPv6	or	SLAAC).
Ensure	that	your	firewall	ACLs	are	configured	to	filter	address	ranges	and	ports	that	transition	technologies	like
Teredo,	6to4,	and	ISATAP	rely	on.

Regarding	the	last	practice,	without	a	connection	to	an	IPv6	ISP,	it	shouldn’t	be	possible	for	hosts	to	use	their	IPv6
address	to	connect	to	the	Internet.	But	keep	in	mind	that	older	versions	of	Windows	[TBD]	have	the	transition
technology	Teredo	enabled	by	default,	which	could	allow	certain	hosts	to	bypass	existing	security	checks	and	gain
unauthorized	access	to	the	Internet.	Other	transition	technologies	like	6to4	and	ISATAP	may	allow	similar	breaches.
These	three	simple	steps	will	instantly	enhance	the	degree	of	security	in	place	across	your	IPv6	adoption	effort.

DUID	versus	MAC

One	of	the	persistent	operational	challenges	of	working	with	DHCPv6	is	the	fact	that	there
is	no	simple	equivalent	to	the	method	in	IPv4	DHCP	of	identifying	a	host	by	its	48-bit
MAC	address.	The	benefit	of	this	method	is	well	known	to	IT	administrators:	once	hosts
are	uniquely	identified	by	their	layer	2	address	they	can	be	assigned	a	particular	address,
given	DHCP	options,	or	even	blocked	from	obtaining	an	address	at	all.

By	contrast,	DHCPv6	standard	relies	on	a	Device	Unique	Identifier	(DUID)	for
unambiguous	host	identification,	given	that	there	is	only	ever	supposed	to	be	one	DUID
per	host.[113]

While	it	is	possible	to	construct	a	DUID	to	include	link	layer	information	like	the	MAC
address,	most	hosts	don’t	yet	manageably	support	this.	Additionally,	link	layer	information
doesn’t	persist	in	requests	relayed	to	DHCPv6	servers	on	a	different	link.

The	end	result	of	this	difference	in	host	identication	methods	is	that	it	is	still	more	difficult
to	identify	IPv4	and	IPv6	addresses	as	belonging	to	the	same	host	than	would	be
preferable	for	easier	host	management	in	a	dual-stack	environment.



IPv6	DNS	Considerations	in	DDI
From	the	standpoint	of	ease	of	deployment,	IPv6	DNS	is	much	less	operationally	complex
as	compared	with	DHCPv6.	As	we’ve	already	observed	in	the	case	of	automatically
generating	reverse	zones,	using	a	DDI	solution	makes	it	even	simpler.

We’ll	examine	the	very	basics	of	IPv6	DNS.	Then,	as	with	DHCPv6	and	IPAM,	we’ll
briefly	cover	what	configuring	DNS	in	a	DDI	system	looks	like.

IPv6	DNS	Basics
Getting	IPv6	into	DNS	in	the	first	place	involved	introducing	a	new	record	type	and	a	new
domain,	respectively.	They	are:

AAAA
ip6.arpa

AAAA

Quad	A	records	are	for	forward	mapping	domain	names	to	IPv6	addresses.	Why	are
they	called	AAAAs?	Well,	recall	that	forward	mapping	a	domain	name	to	an	IPv4
address	requires	an	A	record.	And	since	IPv6	addresses	have	4	times	as	many	bits,	a
touch	of	pseudo-arithmetic	gives	us:	4xA	=	AAAA.[114]

A	AAAA	record	in	a	standard	DNS	master	file	configuration	looks	like	this:
www					IN						AAAA				2001:db8:def2:2000::1

ip6.arpa

PTR	records	in	the	ip6.arpa	domain	are	for,	you	guessed	it,	reverse	mapping	IPv6
addresses	to	domain	names.	Unlike	the	IPv6	address	in	a	AAAA	record,	we’re	not
allowed	to	compress	the	address	in	an	ip6.arpa	record.	And	as	with	PTR	records	for
IPv4	addresses	in	in-addr.arpa	zones,	the	address	is	reversed	to	maintain	the	proper
delegation	hierarchy	within	the	ip6.arpa	name	space:

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.2.f.e.d.8.b.d.1.0.0.2.ip6.arpa.	IN	PTR
www.strangelovesolutions.com.

That’s	a	lot	of	characters	to	account	for	in	a	single	PTR	record.	But	since	every	4	bits	of
the	128-bit	IPv6	address	represents	a	subdomain	under	ip6.arpa	in	the	namespace,	we	have
to	include	all	32	hexadecimal	characters	to	account	for	all	32	subdomains.	(The	automatic
generation	of	these	PTR	records	is	part	of	the	reason	DDI	makes	IPv6	DNS	much	more
manageable,	as	we	observed	in	our	earlier	IPAM	example	with	the	automatic	generation	of
ip6.arpa	reverse	zones).

Configuring	IPv6	DNS	in	DDI
Once	again	using	the	Infoblox	DDI	solution	(vNIOS	6.10.0),	let’s	explore	configuring
IPv6	DNS.	Figure	8-18	shows	the	first	window	of	the	DNS	Add	Authoritative	Zone
wizard.



Figure	8-18.	IPv6	DNS	configuration,	authoritative	zone	wizard,	type	of	zone

We’ve	got	the	choice	to	add	a	forward-mapping	authoritative	zone	or	a	reverse-mapping
authoritative	zone	for	either	IPv4	or	IPv6.	In	this	example,	we’ll	create	a	forward-mapping
zone	(1).

The	domain	name	that	we’re	creating	the	forward-mapping	zone	for	is	entered	in	the	next
screen	of	the	wizard,	Figure	8-19.

Figure	8-19.	IPv6	DNS	configuration,	authoritative	zone	wizard,	name

In	addition	to	entering	our	domain	name	(2),	we	can	enter	a	comment	here	if	we’d	like.
(Also,	note	the	checkboxes	that	allow	the	zone	to	be	temporarily	disabled	or	locked	to
keep	others	from	making	changes	to	it.)

Next	up	is	the	third	screen	of	the	wizard,	Figure	8-20.



Figure	8-20.	IPv6	DNS	configuration,	authoritative	zone	wizard,	name	server	selection

Here,	we	define	the	name	servers	(including	primary	and	secondaries)	for	our	newly
created	zone.	(3)	shows	the	defined	name	server	name,	its	IPv4	and	IPv6	address,	and
whether	it’s	a	primary	or	secondary	name	server.

Once	we	finish	the	wizard	and	create	the	zone,	Figure	8-21	displays	the	results.

Figure	8-21.	IPv6	DNS	configuration,	authoritative	zone	view

(4)	indicates	the	name	of	the	new	authoritative	zone	and	(5)	shows	details	for	the	zone,
including	the	start	of	authority	(with	requisite	serial	and	TTL	info)	and	NS	record.[115]

Next,	we’ll	add	a	AAAA	record.	Figure	8-22	is	our	previous	screen	with	the	pull-down
menu	activated	to	select	the	addition	of	a	AAAA	(6).



Figure	8-22.	IPv6	DNS	configuration,	add	AAAA	record

The	Add	AAAA	record	wizard	appears	(Figure	8-23).

Figure	8-23.	IPv6	DNS	configuration,	add	AAAA	record,	detail

On	this	screen,	we	enter	the	forward-mapping	name	(in	this	case	www)	for	the	record	(7),
the	IPv6	address	(8),	and	check	the	box	to	automatically	generate	a	PTR	record	for	it	(9).

Figure	8-24	displays	the	added	record	(10).

Figure	8-24.	IPv6	DNS	configuration,	authoritative	zone	view	with	added	AAAA	record

Lastly,	Figure	8-25	shows	the	records	available	for	our	ip6.arpa	reverse	zone.	Here,	we
can	verify	the	creation	of	the	PTR	record	and	associated	information	(11).



Figure	8-25.	IPv6	DNS	configuration,	ip6.arpa	zone	with	auto-generated	PTR	record



Summary
IPAM	and	DDI	have	become	essential	components	for	effectively	managing	larger
networks	—	especially	ones	planning	or	running	IPv6	deployments.	The	ability	to	closely
track	address	assignments	and	utilization	is	critical	for	ensuring	the	most	efficient	use	of
the	now-scarce	resource	that	is	IPv4.	It’s	also	necessary	in	helping	establish	and	develop
an	IPAM	practice	for	IPv6	that	will	facilitate	address	planning	and	grow	with	the
organization.

These	operational	efficiencies	are	further	enhanced	by	integration	with	DNS	and	DHCP.
Beyond	simply	tracking	address	allocations,	automating	the	process	of	numbering	and
naming	of	hosts	on	the	network	shortens	provisioning	time	and	helps	eliminate	any	errors
along	the	way.	While	enterprise	networks	will	no	doubt	realize	a	reduction	in	operational
expenses,	hyper-scale	deployments,	like	most	cloud	architectures,	will	simply	not	be
feasible	without	some	form	of	DDI	(whether	off	the	shelf	or	in	the	form	of	a	custom-
developed	solution).

We	explored	the	IPAM	policy	cycle	and	the	features	we	should	expect	to	see	from	most
IPAM	systems.	We	also	looked	at	some	examples	of	how	to	configure	IPAM,	as	well	as
DHCPv6	and	IPv6	DNS	using	Infoblox	virtual	NIOS.	And	reviewing	some	of	the
operational	challenges	of	DHCPv6	suggests	that	we’re	going	to	be	very	busy	managing
dual-stack	(and	perhaps	IPv6-only)	environments.

[106]	Though	not	strictly	IP	addresses,	BGP	ASNs	are	often	included	as	part	of	IPAM	practice	and	in	some	IPAM	tools.

[107]	This	is	not	intended	to	be	a	how-to	guide	for	using	Infoblox	IPAM,	but	rather	to	illustrate	how	one	version	of
IPAM	software	handles	IPv6	management.

[108]	Of	course,	such	a	task	could	also	be	scripted	—	assuming	that	the	appropriate	personnel	have	cultivated	(or	have
access	to)	a	reasonably	mature	scripting	or	devops	practice.

[109]	“Gartner	Market	Guide	for	DNS,	DHCP,	and	IP	Address	Management,”	Andrew	Lerner,	Lawrence	Orans,	25:
April	2014.

[110]	The	prefix	information	provided	by	Router	Advertisements	include	an	On-Link	Flag	(or	L	flag),	which	is	usually
set	by	default.	This	flag	specifies	whether	or	not	the	advertised	prefix	is	on-link	(i.e.,	other	nodes	with	IPv6	addresses	in
that	prefix	are	directly	reachable	on	the	shared	segment).	If	the	L	flag	is	not	set,	traffic	destined	to	addresses	in	the	prefix
advertised	in	the	RA	must	be	sent	to	the	gateway	router	for	processing	(behavior	that	isn’t	generally	expected	or
desirable	for	standard	DHCPv6	or	SLAAC	deployments).

[111]	See	the	IETF	Draft	DHCPv6/SLAAC	Address	Configuration	Interaction	Problem	Statement.

[112]	In	fact,	a	Windows	host	with	IPv6	disabled	may	be	considered	out	of	scope	for	support	from	Microsoft.	You	can
learn	more	about	this	along	with	best	practices	for	Windows	IPv6	configuration	in	Ed	Horley’s	excellent	book	on	the
subject,	Practical	IPv6	for	Windows	Administrators.	(See	Appendix	C.)

[113]	Individual	interfaces	on	a	host	are	identified	by	an	Identity	Association	Identifier	(IAID),	which	when	combined
with	the	DUID	creates	an	explicit	identification	for	a	DHCPv6	reservation.

[114]	We	can	all	look	forward	to	the	next	iteration	of	IP,	which	I	expect	should	have	no	fewer	than	256	bits	for
addressing	resulting	in	AAAAAAAA	DNS	records.

[115]	For	our	limited	example,	we’ve	configured	only	one	NS	record.	In	a	production	network,	you	should	have	at	least
two.

http://bit.ly/dhcpv6-statement




Chapter	9.	Managing	Growth	and	Change



Introduction
In	the	last	chapter,	we	looked	at	some	of	the	tools	that	DDI	in	general	and	IPAM	in
particular	provide	for	the	provisioning	and	management	of	address	and	name	resources.

In	this	chapter,	we’ll	explore	some	of	the	principles	and	best	practices	for	managing	the
address	plan	through	network	and	organizational	growth	and	change.

We’ll	also	review	how	best	to	manage	network	renumbering	in	IPv6	(something	made
easier	by	the	protocol’s	improvements	on	handling	multiple	addresses).

Finally,	we’ll	consider	some	of	the	address	planning	considerations	for	both	next-
generation	networks	and	those	transition	technologies	besides	dual-stack	that	remain
relevant,	as	well	as	how	to	deal	with	unplanned	growth.



Renumerology:	IP	Renumbering	Made	Easy…(or	Somewhat
Less	Painful)
No	matter	how	thorough	our	address	planning	or	how	diligent	our	address	management,
we’ll	eventually	be	confronted	with	the	requirement	to	renumber	some	or	all	of	our
network.	Networks	grow	—	and	shrink	—	along	with	the	businesses	and	organizations
they	support.	Where	growth	occurs,	it	can	be	the	result	of	corporate	mergers	or
acquisitions,	the	planned	deployment	of	new	services	or	technologies,	or	just	good	old-
fashioned	network	bloat	as	infrastucture	is	grafted	on	to	work	around	problems	as	they
arise.	Or	sometimes	we	have	to	change	providers,	number	into	a	new	assignment	from	our
new	provider,	and	out	of	the	old	one	to	return	it.[116]

A	renumbering	project	could	theoretically	apply	to	any	sized	network.	But	fortunately,
renumbering	is	more	often	required	for	a	subset	of	the	overall	addressable	infrastructure
within	an	organization.	Readdressing	an	entire	medium-sized	or	large	network	is	a
daunting	task	and	one	that	can	realistically	only	be	accomplished	in	several	phases;	that	is,
if	we’re	trying	to	keep	the	network	in	production	as	we	do	it.[117]

For	our	discussion,	we’ll	keep	our	renumbering	scenario	limited	in	scope.

Renumbering	in	IPv4	was	(and	is)	the	inevitable	consequence	of	the	interaction	of	two
characteristics	of	IPv4	subnets.

Sparse	allocation	can	be	difficult	or	impossible	with	IPv4	subnets	due	to	the	lack	of
bits	available	for	the	network	portion	of	the	address.	Because	of	characteristic	two,	we
often	lack	an	unused	contiguous	subnet	to	increase	the	size	of	the	right-sized	subnet	we
used	in	characteristic	one;	i.e.,	whatever	subnet	was	contiguous	at	the	time	the	interface
was	originally	configured	has	already	been	assigned	somewhere	else.

As	a	result,	if	we	want	to	add	more	hosts	to	a	segment,	we’re	stuck	renumbering	into	a
different	subnet	with	sufficient	addresses	(or	using	a	secondary	subnet,	which	adds	to	both
operational	complexity	and	to	the	size	of	the	routing	table).

IPv6	was	designed	in	part	to	reduce	the	necessity	and	frequency	of	network	renumbering.
For	one	thing,	with	1.8x10^19	addresses	per	/64	it	should	never	be	necessary	to	renumber
because	of	insufficient	host	addresses!	But	IPv6	was	also	designed	to	make	renumbering
as	painless	as	possible.	Recall	that	an	IPv6	node	can	have	as	many	IPv6	addresses
configured	from	as	many	prefixes	as	may	be	needed	or	practicable.

To	best	understand	how,	we’ll	review	the	general	method	for	IPv6	renumbering	along	with
a	closer	look	at	the	mechanisms	built	into	the	protocol	to	help	facilitate	it.	But	first,	let’s
examine	some	renumbering	preparations	we	can	make.



CAUTION

Remember	that	a	PI	allocation	from	a	RIR	is	portable	—	i.e.,	announceable	to	any	regional	ISP	—	allowing	the
organization	that	receives	and	numbers	into	it	to	use	it	indefinitely	(provided	they	continue	to	meet	the	RIR’s
policies).	PA	space	by	comparison	is	assigned	by	the	ISP	and	must	be	numbered	out	of	by	the	organization	if	they
switch	providers.

While	it	would	certainly	seem	to	make	sense	to	an	end-user	organization	to	simply	ask	for	PI	space	and	reduce	the
possibility	of	having	to	renumber,	given	a	change	of	providers,	we	still	need	to	consider	the	effect	on	the	global
routing	table	that	such	PI	allocations	have.	After	all,	every	PI	allocation	in	use	is	another	entry	in	the	global	routing
table.

For	some	smaller	organizations	and	associated	networks,	renumbering	may	be	eminently	more	manageable,	reducing
the	need	for	a	PI	allocation	and	helping	slow	the	growth	rate	of	the	global	routing	table.

The	Lifetime	and	State	of	an	Autoconfigured	Address
We	learned	in	Chapter	2	that	IPv6	relies	on	Neighbor	Discovery	(ND)	to	allow	nodes	on	a
local	segment	to	learn	about	and	keep	track	of	each	other;	e.g.,	“to	discover	each	other’s
presence,	to	determine	each	other’s	link-layer	addresses,	to	find	routers,	and	to	maintain
reachability	information	about	the	paths	to	active	neighbors.”	[118]

ND	also	facilitates	address	autoconfiguration.	A	critical	message	option	of	this	process	is
the	Prefix	Information	option.	This	32-byte	option	is	included	in	Router	Advertisements
and	includes	a	number	of	fields,	such	as	type	and	length,	as	well	as	one	for	Mobile	IPv6
and	two	reserved	for	future	use.	But	the	remaining	fields	are	most	relevant	to	the	operation
of	address	autoconfiguration.	These	include:

Prefix
Prefix	length
On-Link	flag
Autonomous	flag
Valid	Lifetime
Preferred	Lifetime

The	Prefix	field	contains	the	IPv6	network	being	advertised	by	the	router.	When	combined
with	the	prefix	length	field,	it	defines	the	prefix	that	will	be	combined	with	the	node
interface	ID	to	autoconfigure	an	IPv6	address	on	that	node.

The	On-Link	flag	notifies	a	node	whether	a	given	prefix	in	the	option	is	available	on	the
local	link	or	only	available	through	the	advertising	router.

The	Autonomous	flag	indicates	to	the	node	whether	or	not	the	included	prefix	is	to	be
used	for	stateless	address	autoconfiguration.	When	set	to	0,	it	informs	the	node	to	use	the
stateful	method	(i.e.,	DHCPv6).

The	Valid	and	Preferred	Lifetime	fields	enable	a	key	enhancement	of	IPv6	protocol
functionality	over	IPv4:	the	addition	of	the	address	lifetime	concept	and	mechanism	(and	a
set	of	address	statuses	associated	with	it).

The	Valid	Lifetime	field	is	32	bits	and	defines	how	long	an	address	configured	using	the
included	prefix	and	any	subsequent	SLAAC	address	will	remain	valid.[119]

Similarly,	the	Preferred	Lifetime	field	defines	in	seconds	how	long	a	prefix	and	SLAAC
address	will	remain	preferred.	Once	the	Preferred	Lifetime	value	exceeds	the	Valid



Lifetime	value,	the	address	becomes	invalid	and	may	not	be	used	to	send	or	receive	any
packets.	Thus,	all	valid	addresses	are	also	either	preferred	or	deprecated.	Preferred
addresses	can	be	used	for	any	communication,	while	deprecated	ones	are	not	to	be	used
for	new	communication	(though	existing	communication	can	continue	until	completed).
The	expiration	of	a	Valid	Lifetime	invalidates	the	address	for	any	communication.

Either	field	has	an	infinite	lifetime	if	set	to	all	ones.	e.g.,	0xFFFFFFFF.	If	the	Valid
Lifetime	is	set	to	infinity	and	never	expires	while	the	Preferred	Lifetime	is	allowed	to
lapse,	the	resulting	address	is	permanently	deprecated.	Once	existing	sessions	finish,	no
new	sessions	may	be	initiated	from	that	address.	(The	address,	however,	may	remain
configured	on	the	interface.)

Since	IPv6	was	designed	to	permit	the	configuration	of	as	many	addresses	on	an	interface
as	necessary,	this	mechanism	helps	manage	the	preference	and	selection	of	these	addresses
by	the	host.	SLAAC	has	five	address	states	that	we’ll	need	to	be	aware	of	if	we’re
renumbering	any	network	that	relies	on	it:[120]

Tentative	address

This	is	the	state	of	a	host	address	when	it	is	first	generated	but	not	yet	assigned	to	an
interface	because	it	is	being	validated	as	unique	by	the	Duplicate	Address	Detection
(DAD)	that	IPv6	Neighbor	Discovery	performs.[121]

Valid	address

A	live	address	that	can	be	used	to	send	and	receive	unicast	traffic.	Valid	addresses	can
either	be	preferred	or	deprecated.

Preferred	address

A	valid	address	whose	Preferred	Lifetime	has	not	been	exceeded.	Preferred	addresses
can	send	and	receive	traffic	without	restriction.

Deprecated	address

A	valid	address	whose	Preferred	Lifetime	(but	not	Valid	Lifetime)	has	been	exceeded.
Deprecated	addresses	should	be	used	to	send	and	receive	traffic	for	existing	sessions	but
not	for	new	sessions.

Invalid	address

An	address	whose	Valid	Lifetime	has	expired.	It	cannot	be	used	to	send	or	receive	any
traffic.

Preparing	to	Renumber
Most	of	us	have	experienced	(i.e.,	been	traumatized	by)	a	major	network	renumbering
project	at	least	once	in	our	careers.	But	for	those	that	haven’t	had	the	pleasure,	let’s	clarify
what	we	mean	when	we	say	renumbering.

NOTE

Network	renumbering	is	essentially	a	reconfiguration	plan	and	procedure	in	which	an	existing,	in-use	address	prefix
(or	set	of	prefixes)	is	replaced	by	a	new,	yet-unused	address	prefix	(or	set	of	prefixes).



Though	the	old	and	new	prefixes	are	typically	the	same	size	(something	which	should
make	the	renumbering	plan	a	bit	easier	to	put	together),	they	don’t	have	to	be.

An	IPv6	renumbering	checklist

Handling	a	network	renumbering	project	is	made	easier	—	with	less	danger	of	disruption
to	the	existing	network	—	by	using	a	simple	checklist	to	remind	us	of	all	the	areas	of	the
network	we’ll	need	to	configure	with	new	prefixes,	addresses,	and	names.

Router	and	switch	interfaces

Point-to-point	links
LAN	interfaces
Loopback	and	management

Routing	protocols
ACLs

Security

Firewalls
IDS/IPS

Routing

BGP/WAN	edge

Auto-addressing	ranges

DHCPv6
SLAAC

Host	interfaces
DNS	entries

AAAA
PTR

Any	applications	using	embedded	addresses

Address	abstraction

One	approach	for	reducing	the	amount	of	overall	reconfiguration	necessary	for	any
renumbering	effort	is	to	use	names	or	variables	instead	of	actual	IPv6	addresses	wherever
possible.	Two	examples	of	this	include:

1.	 The	use	of	FQDNs	instead	of	IP	addresses	(for	things	like	VPN	tunnel	endpoints)
2.	 The	use	of	variables	and	names	in	ACLs	and	flat	text	configuration	files

This	method	can	simplify	network	management	in	general	in	the	long	run	and,	if	put	into
practice	ahead	of	time,	may	reduce	the	amount	of	preparation	required	when	network
renumbering	becomes	necessary.

Address	lifetimes	and	DNS	TTLs

Whether	end	hosts	on	the	network	are	relying	on	DHCPv6	or	SLAAC,	reconfiguration	of
addresses	can	be	timed	and	tuned	to	reduce	operational	strain.



The	Renumbering	Method
Renumbering	must	usually	occur	in	phases	in	order	to	keep	the	network	up	and	running.
However,	depending	on	the	operational	agility	and	management	practice	of	the	IT
organization,	smaller-	to	medium-sized	networks	can	possibly	renumber	using	the	flag	day
approach.

At	the	beginning	of	the	renumbering	project,	the	network	is	live	using	the	old	prefix.

The	first	step	of	renumbering	(following	planning,	of	course)	is	adding	addresses	from	the
new	prefix	to	network	infrastructure	like	routers	and	switches	and	the	links	that	connect
them.	Since	IPv6	has	been	designed	to	better	support	multiple	addresses	and	subnets	on
single	interfaces,	this	step	can	be	accomplished	without	impacting	production	traffic	using
the	old	prefix.

The	next	step	is	to	configure	hosts	to	use	addresses	from	the	new	prefix.	The	procedure	for
this	will	be	slightly	different,	depending	on	whether	you’re	using	DHCPv6	or	SLAAC.

As	we’ve	discussed,	most	enterprise	hosts	will	likely	be	using	DHCPv6.	At	the	planned
time,	a	unicast	RECONFIGURE	message	from	the	DHCPv6	server	to	the	hosts	will
trigger	the	necessary	change	of	addresses.	Dynamic	DNS	will	then	automatically	update
the	hosts’	AAAA	and	PTR	records.	Groups	of	hosts	can	be	renumbered	in	stages	to	reduce
potential	operational	strain	and	better	isolate	any	problems	that	arise.

If	SLAAC	is	in	use,	the	procedure	is	a	bit	more	involved.

First,	the	Valid	and	Preferred	Lifetime	settings	for	the	existing	prefix	are	adjusted.	Neither
of	these	timers	should	exceed	the	overall	duration	of	the	renumbering	effort.

In	most	networks,	host	sessions	are	short-lived,	so	there	may	be	little	benefit	in	making	the
valid	lifetime	longer	than	the	preferred	lifetime	for	a	given	prefix.

However,	if	there	are	hosts	on	the	network	that	maintain	persistent	sessions	(e.g.,	video	or
real-time	services),	a	longer	valid	lifetime	for	a	prefix	will	provide	a	buffer	that	allows
applications	to	continue	using	an	address	for	existing	sessions,	even	though	the	preferred
lifetime	has	elapsed	and	the	address	has	moved	to	a	deprecated	state.

Next,	the	new	prefix	must	be	added	to	the	router	or	daemon	configuration	and	advertised
to	the	host.	The	updated	RAs	will	cause	the	hosts	to	autoconfigure	a	new	address.

At	this	point,	host	logic	for	address	selection	will	determine	which	of	the	two	configured
addresses	gets	used	for	new	sessions.[122]

Finally,	once	everything	is	stable,	the	old	prefix	and	addresses	can	be	removed	from	hosts,
network	infrastructure,	and	DNS.

NOTE

And	speaking	of	DNS,	I	probably	can’t	say	it	any	better	than	the	IETF	says	it:	“It	is	recommended	that	the	site	have
an	automatic	and	systematic	procedure	for	updating/synchronizing	its	DNS	records,	including	both	forward	and
reverse	mapping.	In	order	to	simplify	the	operational	procedure,	the	network	architect	should	combine	the	forward
and	reverse	DNS	updates	in	a	single	procedure.	A	manual	on-demand	updating	model	does	not	scale	and	increases	the
chance	of	errors.”[123]

Translation:	DDI	will	make	renumbering	easier	and	less	error-prone!



Frequent	Renumbering
If	your	particular	network	design	or	business	requirements	compel	you	to	change	prefixes
and/or	addresses	often,	there	are	perhaps	a	couple	of	architectural	and	operational
practices	you	might	want	to	cultivate	to	streamline	this	process	as	much	as	possible.

If	you	change	ISPs	often	and	are	unable	to	secure	a	PI	allocation	for	whatever	reason,	you
might	consider	using	ULA	space	along	with	NPTv6	(Figure	9-1).[124]

Figure	9-1.	NPTv6	using	ULA

In	this	illustration,	a	small	enterprise	is	singly-homed	to	an	ISP	(and	the	Internet).	The	ISP
has	assigned	a	PA	prefix	to	the	customer,	2001:db8:2112::/48.	Internally,	the	enterprise	has
deployed	ULA	addresses.	The	prefix	from	which	these	addresses	are	configured	has	been
generated	in	the	proper	pseudo-random	fashion	to	help	insure	that	it	doesn’t	overlap	with
any	other	ULA	assignments	anywhere.	That	way,	if	this	enterprise	network	should	ever
need	to	merge	or	connect	to	another	network	that	is	also	using	a	ULA	prefix,	the
probability	of	overlap	is	exceedingly	unlikely.	(Compare	this	scenario	to	one	with	an	IPv4
network	where	the	10.0.0.0/8	network	is	in	use.)

The	host	has	been	assigned	an	address	from	a	/64	assigned	from	the	ULA	prefix,	i.e.,
fde6:15e:1180:2000::100.	The	host	wants	to	connect	to	a	server	on	the	IPv6	Internet
offering	content	at	the	address	2001:db8:667::1.	The	enterprise’s	edge	router	has	been
configured	for	NPTv6,	which	statelessly	translates	any	traffic	from	any	address	in	the
ULA	prefix	fde6:15e:1180::/48	to	the	equivalent	address	using	the	GUA	prefix
2001:db8:2112::/48	(i.e.,	prefix	translation).	The	process	is	reversed	for	traffic	returning	to
the	host	from	the	server.

In	a	renumbering	scenario	compelled	by	the	enterprise’s	switching	to	a	new	ISP	(or	the
existing	ISP	needing	to	change	the	prefix	assigned	to	the	enterprise),	the	enterprise	would
have	no	need	to	renumber	internally.	Instead,	they’d	need	only	change	the	external	routed
GUA	prefix	on	the	edge	router	and	within	the	NPTv6	configuration.

Also,	in	instances	where	small	end	sites	within	the	network	might	frequently	change
addressing,	it	may	be	desirable	to	use	DHCPv6	and	prefix	delegation	for	such	sites	—
much	as	a	broadband	ISP	might	assign	a	prefixes	to	a	customer’s	cable	modem	or	home
router.



Unplanned	Growth
IPv6	provides	tremendous	advantages	over	IPv4	in	providing	addressing	when	unexpected
or	unplanned	growth	of	the	network	takes	place.	Here	are	general	recommendations	for
prefix	assignment	size,	depending	on	the	network	element	being	added:

/64s

New	LAN	segment
New	point-to-point	link
Any	“flat”	network	(a	single	broadcast	or	collision	domain)
A	group	of	sensors

/48s

New	sites
New	data	centers
New	lab	environments
Any	location	or	network	that	requires	direct	reachability	to	the	Internet

>/48

Networks	of	acquired	or	merged	companies

If	you’ve	done	your	address	planning	correctly,	you’ll	have	IPv6	subnets	in	reserve	at	all
levels	of	your	network	hierarchy.	Depending	on	the	scope	and	location	of	the	network(s)
and	supporting	infrastructure	being	added,	the	appropriate-sized	subnet	can	be	allocated.



An	Address	in	Cloud	City
I	may	be	just	an	empty	flesh	terminal	relying	on	technology	for	all	my	ideas,	memories,	and	relationships.	But	I	am
confident	that	all	of	that	—	everything	that	makes	me	a	unique	human	being	—	is	still	out	there	somewhere,	safe	in
a	theoretical	storage	space	owned	by	giant	multinational	corporations.

—	Stephen	Colbert

I	would	bet	my	signed	first	edition	of	“DNS	and	BIND”	that	had	I	invited	you	to	join	me
in	a	round	of	technology	buzzword	bingo	covering	the	last	few	years,	your	first,	second,
and	third	words	would	be	cloud,	cloud,	and	cloud.	But	setting	aside	whatever	hype	factor
might	accompany	this	set	of	technologies,	there	can	be	little	doubt	that	cloud	services	are
dramatically	reshaping	the	way	computing	resources	are	created	and	consumed,	especially
for	enterprise	IT.

In	spite	of	this	ubiquity	of	both	the	technology	and	the	term,	it	might	still	be	helpful	to
start	our	discussion	with	a	working	definition	of	cloud.	The	National	Institute	of	Standards
and	Technology	(NIST)	offers	a	pretty	serviceable	one:[125]

NOTE

“Cloud	computing	is	a	model	for	enabling	ubiquitous,	convenient,	on	demand	network	access	to	a	shared	pool	of
configurable	computing	resources	(e.g.,	networks,	servers,	storage,	applications,	and	services)	that	can	be	rapidly
provisioned	and	released	with	minimal	management	effort	or	service	provider	interaction.”

It	should	be	evident	from	that	definition	that	the	value	proposition	of	cloud	computing
(and	SDN)	is	founded	on	agility,	i.e.,	how	quickly	computer,	storage,	and	network
resources	can	be	provisioned	(as	well	as	de-provisioned)	in	support	of	IT	services	and
applications.	The	on-demand	aspect	of	these	offerings	allows	enterprises	to	spend	only	as
much	as	is	needed	on	cloud	services	to	support	what	they	actually	use	(instead	of	the
danger	of	either	underutilizing	or	quickly	exhausting	the	resources	of	the	infrastructure
they	already	own	or	must	acquire).

But	such	agility	must	be	engineered	into	the	cloud	provider’s	underlying	architecture,
infrastructure,	and	operations.	The	necessity	of	pooling	compute	and	storage	resources	to
support	the	economical	and	rapid	scaling	of	services	to	a	given	client	means	that	many
such	clients	must	share	access	to	these	resources	in	a	cloud	provider’s	data	center.
Keeping	these	customers	logically	separate	for	routing,	security,	and	SLA	enforcement
purposes	requires	unique	addresses	(as	well	as	the	ability	to	rapidly	provision	and
deprovision	them).

Meanwhile,	these	cloud	solution	providers	face	the	same	challenges	confronting
traditional	service	providers:	how	to	use	the	relatively	limited	space	available	in	IPv4	to
scale	their	offerings.	Since	little	if	any	public	IPv4	space	is	left,	cloud	providers	would
need	to	rely	on	private	IPv4	addressing	(and	possibly	NAT).

Service	categories	have	arisen	as	products	from	this	concept	include:

Software	as	a	Service	(SaaS)
Platform	as	a	Service	(PaaS)
Infrastructure	as	a	Service	(IaaS)

These	services	are	generally	public	(or	external	to	the	organization)	cloud	offerings.
Private	(or	internal)	clouds	are	“homegrown,”	internal	to	the	organization	(though	IT	can



offer	the	same	categories	of	service	to	different	business	units	or	divisions	within	the
organization).	Some	organizations	have	adopted	a	hybrid	cloud	approach,	seeking	benefit
from	the	use	of	some	combination	of	both	private	and	public	clouds.
We	should	probably	also	talk	about	what	problem	cloud	computing	was	developed	to
solve:	namely,	controlling	IT	costs	—	especially	capital	expenditures	(CAPEX)	on
infrastructure	while	simultaneously	expanding	the	quality	and	quantity	of	technology
resources	available	to	the	organization.

Traditional	corporate	networks	connect	to	external	public	cloud	offerings	via	the	Internet.
Of	course,	in	the	age	of	teleworkers,	remote	offices,	and	mobile	device	productivity,
connections	to	public	cloud	services	are	not	limited	to	originating	from	corporate	LANs.
This	is	an	argument	for	ensuring	that	CSPs	offer	their	services	over	IPv6.	As	we’ve
discussed,	the	broadband	and	mobile	networks	these	itinerant	workers	rely	on	themselves
increasingly	rely	on	IPv6	addressing	to	cost-effectively	solve	their	challenges	of	scale	in
an	operationally	efficient	way.

The	interface	between	the	public	network	(or	VPN)	acts	as	a	frontend	to	all	customer
traffic.	Frontends	often	groom	the	arriving	traffic	in	some	way:	by	load-balancing	it,	or
translating	it	in	some	way	so	that	application	or	database	servers	on	the	backend	with
particular	presentation	requirements	can	focus	on	doing	what	they’re	supposed	to	be	doing
and	not	have	to	worry	about	modifying	arriving	session	traffic.

In	this	fashion,	the	frontend	can	be	used	to	service	requests	arriving	over	IPv6	without
regard	for	whether	the	backend	network	and	servers	comprising	the	cloud	service	are	IPv6
or	IPv4.

But	as	we’ve	discussed,	the	elastic	provisioning	requirements	of	cloud	services	suggest
that	IPv6	adoption	promises	operational	efficiencies	and	cost	savings	over	time.

As	a	result,	IPv6	and	cloud	are	becoming	inextricably	linked.	IPv6	has	attributes	that
better	enable	the	rapid	provisioning	models	cloud	computing	requires	to	deliver	on	its
promise	of	economical	business	agility.	These	include:

Sufficient	addressing

This	enables	cloud	providers	to	rapidly	provision	and	deprovision	any	number	of	virtual
servers.

Enhanced	auto-addressing

The	provisioning	of	virtual	servers	is	better	facilitated	by	multiple	auto-addressing
mechanisms,	including	SLAAC,	as	well	as	stateful	and	stateless	DHCPv6.

Improved	management	of	Layer	2	to	Layer	3	mapping

ARP	in	IPv4	is	replaced	by	ND	in	IPv6.	ND’s	use	of	multicast,	as	compared	with
broadcast	in	IPv4,	is	much	more	efficient	and	preserves	LAN	resources.

The	abundant	addressing	of	IPv6	provides	hierarchical	consistency	and	unlimited	scale.
IPAM	practice	can	be	improved	to	enable	automation	and	more	agile	service	provisioning
and	operations.



ADOPTING	IPV6	AND	CLOUD

A	fairly	compelling	argument	can	be	made	for	an	organization	tackling	IPv6	adoption	at	the	same	time	that	they	take
steps	to	adopt	cloud	technology.	Cloud	and	IPv6	intiatives	are	contemporaenous	for	many	organizations	and	as	a
result	certain	synergies	can	be	realized	by	combining	the	two.

For	instance,	when	shopping	for	cloud	services,	a	bit	of	additional	due	diligence	is	in	order.	We	should	determine,	of
course,	whether	the	proposed	CSP	supports	IPv6	at	all.	If	they	don’t	today,	when	will	they?	And	what	is	their	take	on
how	IPv6	fits	into	their	overall	strategy?	But	assuming	they	do	support	IPv6	connections	from	customers,	does	their
backend	support	IPv6	and	if	not,	why?	Obviously,	there	are	many	other	criteria	for	deciding	on	a	given	CSP,	but
perhaps	we	can	agree	that	it’s	better	to	understand	up	front	how	they	perceive	any	necessity	(or	lack	of	it)	in
supporting	IPv6	both	externally	and	internally.



The	Internet	of	Things
Remember	the	statistic	from	Chapter	1?	50	billion	devices	connected	to	the	Internet	by
2020.[126]

And	thank	goodness	for	IPv6,	or	there’d	be	no	hope	of	manageably	getting	these	devices
online.

But	before	we	explore	a	specific	instance	of	what	address	planning	for	these	devices	might
look	like,	let’s	step	back	to	look	at	the	bigger	picture.

Figure	9-2	illustrates	the	progression	of	Internet-connected	device	types	in	the	past	and	up
to	the	50	billion	mark	while	Figure	9-3	shows	the	number	of	Internet-connected	devices
per	person	over	time.

Figure	9-2.	Internet-connected	devices	over	time



Figure	9-3.	Internet-connected	devices	per	person

Beyond	the	devices	we’re	already	acutely	aware	of	(tablets,	smartphones,	laptops,	routers,
switches,	etc.),	what	makes	up	the	things	in	the	Internet	of	Things?

Utility	distribution	(Electric/H2O/Gas)

Home	meters
Smart	grid
Smart	home	(lighting/HVAC)

Home	appliances

Sensors

Automotive
Industrial
Agricultural
Infrastructure
Medical	devices

Wearables
Biochipped	animals

At	some	point	in	the	future,	existing	and	new	devices	will	comprise	an	Internet	of
Everything	(IoE),	potentially	allowing	data	collected	from	every	device	to	be	leveraged	to
help	solve	economic,	environmental,	and	social	problems.	Figure	9-4	and	Figure	9-5
illustrate	the	relationships	between	the	things	in	IoT	and	the	data,	people,	and	processes
that	will	drive	the	IoE.



Figure	9-4.	Internet	of	Everything



Figure	9-5.	Internet	of	Everything

Why	IPv6	for	the	Internet	of	Things?	We’ve	already	mentioned	the	obvious	reason:
sufficient	unique	addresses	for	tens	of	billions	of	devices.	But	there	are	other	reasons	why
IPv6	is	critical	to	the	success	of	the	IoT.	These	reasons	have	to	do	with	the	unusual
characteristics	of	many	IoT	devices	themselves.

Characteristics	of	IoT	Devices
As	you	may	have	guessed,	IoT	devices	can	be	quite	different	than	the	fixed	and	mobile
devices	that	have	made	up	the	bulk	of	connected	Internet	nodes	up	till	now.	For	instance,
many,	if	not	most,	of	the	connected	devices	will	share	the	following	characteristics	shown
in	Table	9-1:

Table	9-1.	Characteristics	of	IoT	devices

Characteristic Unit(Scale)

Small	packet	size Bytes(~100)

Low	cost Cents(50)

Low	power Milliamps(~1)

Limited	memory	and	processing Kilobytes(~100)

Low	bandwidth Kilobytes/second(~100)

Lossy	wireless Megahertz(<1000)



These	limits	to	available	power,	bandwidth,	and	processing	capability	drive	the	standards
and	protocols	required	to	connect	such	devices	and	lead	to	the	need	to	reduce	their
complexity	(thus	reducing	cost).

Part	of	the	complexity	of	IoT	deployments	is	that	there	are	competing	standards	and
propietary	technologies	attempting	to	make	the	best	of	the	strict	“scale	down”	engineering
requirements	stemming	from	IoT	device	characteristics.

For	instance,	several	low-power	wireless	standards	exist,	as	shown	in	Table	9-2:

Table	9-2.	Low-power	wireless	standards

Name Standard

DECT	ULE ETSI	300-175

ZigBee 802.15.4

Bluetooth	“Smart” Part	of	Bluetooth	4.0

Z-Wave G.9959

IPv6	in	particular,	and	IP	in	general	is	one	way	to	help	accomplish	this.	Engineers	focused
on	IoT	are	fond	of	calling	IP	the	integration	protocol	for	the	promise	it	holds	in	stitching
together	different	lower	layer	protocols.

This	is	the	focus	of	the	IETF	6LoWPAN	effort.	The	associated	standards	introduce
methods	to	scale	IPv6	down	in	order	to	work	within	the	IoT	device	constraints	(Table	9-3).

Table	9-3.	6LoWPAN	standards

Standard Purpose

RFC	6775 Neighbor	discovery/address	registration

RFC	4944 Basic	encapsulation	for	802.15.4	links

RFC	6282 Stateless	header	compression

With	IPv6	successfully	scaled	down	to	work	in	constrained	device	networks	of	various
types,	routing	for	these	networks	can	also	be	standardized.	This	approach	reduces	the	so-
called	Internet	of	Gateways	problem	where	silos	created	by	various	IoT	device	network
solutions	end	up	using	different	layer	3	protocols,	requiring	translation	and	reducing
scalability.

Routing	standardization	is	provided	by	RPL	(pronounced	“ripple”),	or	routing	protocol	for
low-power	and	lossy	networks.	The	limited	bandwidth	and	low	rates	of	packet	delivery	in
LLNs	create	requirements	to	support	multiple	modes	of	traffic	flow:	exclusively	between
endpoints	(point-to-point),	as	well	as	between	endpoints	and	a	central	control	point
(multipoint-to-point)	and	vice-versa	(point-to-multipoint).

Figure	9-6	shows	an	example	of	an	LLN	topology	applied	in	the	form	of	a	simple	last-
mile	smart	grid	infrastructure	with	redundancy.

http://bit.ly/rfc-6775
http://bit.ly/rfc-4944
http://bit.ly/rfc-6282


The	LLN	itself	is	indicated	as	a	Neighborhood	Area	Network	(NAN),	perhaps	a	radio
mesh	of	smart	meters.	But	it	could	also	be	any	collection	of	constrained	devices	requiring
interconnectivity	and	communication	to	a	central	system.



Figure	9-6.	Last-mile	smart	grid	infrastructure

IPv6	Address	Planning	for	IoT	Deployments



Though	IoT	networks,	such	as	smart	grids	for	utilities,	may	ultimately	consist	of	several
million	devices,	for	ease	of	management	and	maximum	scalability,	subnets	of	no	more
than	a	few	thousand	nodes	may	be	desirable.	These	subnets	may	logically	terminate	at
edge	routers,	which	will	also	likely	be	the	interface	to	the	WAN	or	LAN,	the	routing
protocol	redistribution	point	(if	RPL	is	in	use),	and	the	location	(or	gateway	to)	the
required	auto-addressing	configuration	components.

It’s	very	likely	that	an	organization’s	device	network	architecture	will	be	consistent	and
repeatable	for	discrete	locations	providing	the	same	application	set.	Because	of	this,	an
IoT	deployment	often	follows	the	same	design	practice	that	is	common	for	ISPs	and	data-
center	deployments:	a	cookie-cutter	architecture	consisting	of	well-defined	infrastructure
modules	with	configurations	standardized	(except	those	configuration	elements	unique	to
that	module).

Such	uniform	architectures	lend	themselves	well	to	a	similarly	uniform	address	planning
approach.

NOTE

This	generalized	topology	imagines	that	most,	if	not	all,	device	networks	will	be	stub	networks	connected	to	a
distribution	and/or	core	layer	to	provide	more	operationally	familiar	routing	(e.g.,	OSPF	or	IS-IS)	with	sub-second
convergence	times.	In	other	words,	any	required	communication	between	devices	within	these	stub	networks	would
necessarily	be	carried	through	the	distribution	or	core	layer.	RPL	provides	true	distance	vector	routing	with	a
minimum	of	control	traffic	more	suitable	for	an	LLN.	This	may	permit	the	construction	of	more	complex	topologies
supporting	communication	between	many	thousands	of	devices.

Three	Suggestions	for	IoT	IPv6	Address	Assignments
1.	 Assigning	a	default	subnet	size	of	a	/64	to	the	device	network	(e.g.,	the	NAN	in	the

above	illustration).	A	/64	assignment	would	usually	preclude	any	prefix	delegation
within	the	constrained	network.	But	the	feasibility	of	successfully	incorporating	PD
given	the	processing	limits	of	IoT	devices	is	probably	low.

2.	 Using	prefix	delegation	to	assign	a	/56	or	/60	to	the	device	network	gateways	(e.g.,
in	the	previous	illustration,	PD	to	the	border	routers	in	the	WANs	directly	connected
to	the	NANs).

3.	 Setting	aside	a	/48	per	region,	per	device	network	application.	A	/48	guarantees
portability	on	the	Internet	if	needed	but	is	still	large	enough	to	provide	sufficient	/64
subnets	for	the	application	the	device	network	is	providing	across	a	given	region.



Summary
The	practice	of	renumbering	needn’t	always	remain	the	laborious	and	costly	process	it	has
frequently	been	in	the	past.	As	we’ve	learned,	IPv6	provides	mechanisms	that	make	it
more	manageable.	And	in	fact,	the	resulting	evolution	of	renumbering	practice	should
happen	concurrently	with	leveraging	IPv6	to	provide	addressing	and	address	management
for	the	new	network	environments	such	as	cloud,	IoT,	and	SDN	—	environments	that	will
prove	critical	to	scaling	the	next	phase	of	the	Internet.

[116]	At	least	some	of	NAT’s	traditional	appeal	for	organizations	is	that	it	could	help	prevent	or	delay	the	need	to
renumber.

[117]	In	some	sense,	deploying	dual-stack	IPv6	and	the	eventual	migration	to	native	IPv6	is	renumbering	an	entire
network,	but	considering	the	fact	that	most	organizations	will	do	this	over	the	course	of	years,	such	a	project	is	made
much	more	manageable	as	a	result.

[118]	RFC	4861,	Neighbor	Discovery	for	IP	Version	6	(IPv6).

[119]	Also,	how	long	the	included	prefix	will	be	used	for	determining	on-link	status.

[120]	RFC	4862,	IPv6	Stateless	Address	Autoconfiguration.

[121]	RFC	4862.

[122]	The	proper	address	selection	logic	is	defined	in	RFC	6724,	Default	Address	Selection	for	Internet	Protocol	Version
6	(IPv6).

[123]	RFC	6879,	IPv6	Enterprise	Network	Renumbering	Scenarios,	Considerations,	and	Methods.

[124]	RFC	6296,	IPv6-to-IPv6	Network	Prefix	Translation.

[125]	The	NIST	Definition	of	Cloud	Computing,	NIST	Special	Publication	800-145.

[126]	50	billion	sounds	like	a	large	number	(and	it	is),	but	it	only	equals	slightly	more	than	seven	devices	per	person	for
the	global	population.	It’s	quite	easy	to	imagine	a	scenario	where	a	person	is	the	logical	endpoint	of	many,	many	more
devices	than	seven.

http://bit.ly/rfc-4861
http://bit.ly/rfc-4862
http://bit.ly/rfc-6724
http://bit.ly/rfc-6879
http://bit.ly/rfc-6296
http://bit.ly/nist-cloud-compute




Chapter	10.	Keeping	Your	IPv6	Addresses
Reachable

A	name	indicates	what	we	seek.	An	address	indicates	where	it	is.	A	route	indicates	how	we	get	there.

—	Jon	Postel



Introduction
There	wouldn’t	be	much	point	to	the	whole	exercise	of	creating	and	managing	a	great
IPv6	address	plan	if	we	didn’t	also	implement	policies	and	practices	that	keep	those
addresses	reachable.

Routing	on	our	internal	networks	and	across	the	Internet	requires	some	considerations
unique	to	IPv6.	We’ll	review	the	IPv6	versions	of	the	routing	protocols	familiar	to	us	from
IPv4	with	special	attention	to	the	differences	that	will	help	us	keep	our	IPv6	addresses
live.

Many	enterprises	(especially	small	to	medium-sized	organizations)	have	traditionally
relied	on	PA	IPv4	space	from	an	ISP.	They	may	be	opting	for	an	IPv6	PI	allocation
directly	from	a	RIR	for	the	first	time.	The	practices	to	keep	those	IPv6	prefixes	externally
reachable	and	optimally	routed	may	be	less	familiar	to	them.

We’ll	also	examine	the	impact	of	IPv6	routing	table	size	on	memory	that	may	affect	the
overall	reachability	of	our	networks.



Routing	with	IPv6
Just	as	with	IPv4,	you’ll	be	relying	on	a	routing	protocol	to	get	traffic	between	sites	or
within	sites.	Thankfully,	for	the	sake	of	preserving	our	copious	amounts	of	free	time
(CAFT),	we	don’t	have	to	learn	any	new	routing	protocols	exclusive	to	IPv6.	That	is,	the
IGPs	and	EGPs	we	know	and	(as	long	as	we’ve	configured	them	correctly	and	they’re
behaving)	love	from	IPv4	have	all	been	enhanced	to	support	IPv6.

These	include:

IGPs

RIPng
EIGRP	for	IPv6,	IPv6	Implementation	Guide,	Cisco	IOS	Release	15.2M&T	—
Implementing	EIGRP	for	IPv6.
OSPFv3[127]

IS-IS	for	IPv6[128]

EGPs

MP-BGP[129]

Figure	10-1	provides	a	comparison	between	the	IPv4	protocols	and	the	newer	IPv6
versions.

Figure	10-1.	Routing	Protocols	Comparison,	IPv4	to	IPv6

We’ll	leave	any	exhaustive	exploration	of	these	protocols	to	other,	more	worthy	texts.	But
to	explore	some	of	their	important	operational	considerations,	we’ll	need	to	at	least	briefly
review	them.

http://bit.ly/cisco-guide


Selecting	Your	IPv6	Routing	Protocol(s)
If	you	haven’t	already	been	through	this	exercise	and	selected	your	IPv6	routing	protocols
(or	even	if	you	have	and	want	to	validate	your	choice),	how	do	you	go	about	choosing?
Since	we	have	at	our	disposal	all	the	same	routing	protocols	as	in	IPv4,	one	path	forward
is	simply	to	select	the	one(s)	we’re	currently	using.

As	we’ll	see,	this	approach	is	perfectly	valid,	but	shouldn’t	be	made	without	examining
some	of	the	other	considerations	that	should	inform	our	choices	based	on	how	they	may
impact	our	operations.

But	first,	let’s	look	at	the	primary	benefit	of	using	the	routing	protocol	(or	protocols)	we’re
already	using.

Operational	Continuity
Using	the	same	routing	protocol(s)	in	IPv6	that	we’re	currently	using	in	IPv4	has	the
powerful	benefit	of	providing	operational	continuity.	Since	you	and	your	colleagues	are
probably	intimately	familiar	with	how	to	keep	whatever	protocol	you’re	using	today	up
and	routing	packets,	you’ll	be	taking	advantage	of	some	institutional	knowledge	that
should	lead	to	(in	theory	at	least)	better	and	faster	fault	isolation	and	route	optimization.

Even	if	we	choose	to	run	the	same	routing	protocol	for	IPv6,	there	may	be	additional
considerations	(and	gotchas).

Distance	Vector	and	Link	State	Routing	Protocols
Before	getting	into	the	difference	between	topology	modes,	let’s	briefly	review	how
dynamic	routing	protocols	accomplish	tracking	network	paths	and	routing	packets.	The
most	widely	deployed	routing	protocols	generally	fall	into	one	of	two	classes	(or,	in	one
case,	a	combination	of	both):

Distance	vector
Link	state

Of	course,	the	goal	of	either	of	these	types	of	routing	protocols	is	to	converge	(and
reconverge)	quickly	enough	to	create	a	stable,	loop-free	topology	that	gets	packets	from
where	they	are	to	where	they	need	to	be	in	the	network.

A	distance	vector	protocol	relies	on	each	routing	node	sharing	its	entire	routing	table	with
all	of	its	directly	connected	neighbors.	The	distance	in	distance	vector	is	a	measurement	of
the	cost	(often,	the	number	of	hops)	to	reach	a	destination,	and	the	vector	is	via	which
next-hop	router.	Routers	running	a	distance	vector	protocol	pass	along	a	routing	table	from
one	neighbor	to	another,	i.e.,	“routing	by	rumor.”

RIP	and	EIGRP	are	examples	of	distance	vector	routing	protocols.

By	contrast,	a	node	in	a	link	state	protocol	knows	about	its	directly	connected	links	and
shares	these	link	states	with	its	immediate	neighbor	nodes.	Each	node	uses	that
information	to	build	and	maintain	a	link	state	database	and	calculate	the	shortest	path	to
any	given	destination	for	a	packet	or	flow.	The	reliability	of	this	route	information	is
generally	much	greater	than	its	equivalent	in	a	distance	vector	protocol	because	no	router
is	sharing	more	than	what	it	knows	about	directly	and	every	node	has	calculated	a



complete	picture	of	the	network.

OSPF	and	IS-IS	are	examples	of	link	state	protocols.

TIP

One	significant	variation	of	the	distance	vector	protocol	is	known	as	the	path	vector	protocol.	A	path	vector	protocol
associates	each	destination	prefix	with	a	particular	path	through	the	network.	This	path	is	formed	by	the	chain	of
autonomous	system	numbers	that	would	be	traversed	by	a	packet	to	reach	the	destination	prefix.	The	path	vector
algorithm	analyzes	each	path	and	removes	any	destination	prefix	with	a	path	that	contains	the	same	ASN	two	or	more
times	(implying	a	loop	in	the	topology).	BGP	is	an	example	of	a	path	vector	protocol.

EIGRP	is	primarily	a	distance	vector	protocol,	but	shares	some	features	with	link	state	protocols,	such	as	neighbor
state	tracking	and	triggered	updates	(versus	periodically	sending	the	entire	routing	table).	This	provides	for	much
faster	convergence	and	a	more	reliable	picture	of	the	network.

ALL	OF	‘EM

Years	ago	I	worked	for	a	large	ISP	that	had	several	smaller	ISPs	as	customers.	One	ISP	customer	in	particular	always
seemed	to	be	suffering	outages	and,	as	a	result,	initiated	many	calls	to	our	NOC	for	emergency	help.	During	one	such
troubleshooting	session	with	this	customer,	I	asked	him	what	routing	protocol	or	protocols	he	was	running.	“All	of
‘em,”	he	replied	(which,	at	the	time	and	in	his	case	meant	RIP,	OSPF,	EIGRP,	IS-IS,	and	BGP).	My	laugh	was	cut
short	by	the	realization	that	he	was	serious	(and	that	this	fact	of	his,	um,	network	configuration	was	likely	the	source
of	his	many,	many	outages).	If	only	he’d	been	an	early	adopter	of	IPv6:	he	could	have	tried	running	no	fewer	than	10
routing	processes!



Dual-Stack…but	Not	Necessarily	Dual	Topology
When	it	comes	to	choosing	the	IGP	we’re	going	to	use	in	a	dual-stack	environment,
there’s	an	additional	consideration	that	may	not	be	immediately	obvious.	It’s	based	on	the
fact	that	two	of	our	IGPs	(as	well	as	our	EGP)	provide	a	way	to	either	share	or	isolate
elements	of	the	topology	and	(any	associated	router	processes)	according	to	what	address
family	they	belong	to,	i.e.,	IPv4	or	IPv6.

Most	current	implementations	of	router	and	switch	code	available	from	Vitamin	C,	J,	and
B	(i.e.,	Cisco,	Juniper,	and	Brocade)	vendors	offer	these	options.	Such	options	vary	in
scope	and	implementation,	depending	on	the	routing	protocol	in	question,	so	let’s	review
each.

IS-IS	for	IPv6:	Single-topology	or	Multi-topology	Mode
IS-IS	for	IPv6	offers	a	choice	of	single-topology	or	dual-topology	mode.

In	single-topology	mode,	routers	participating	in	IS-IS	share	a	single	link	state	database.
Thus,	the	IS-IS	process	in	this	case	bases	its	best	path	selection	for	both	IPv4	and	IPv6
routes	on	a	single	shortest	path	first	(SPF)	calculation	for	that	database.

CAUTION

Keep	in	mind	that	this	means	anywhere	you’ve	configured	an	interface	for	IPv4,	you’ll	need	to	configure	the	same
interface	for	IPv6	(and	vice	versa).

Because	of	this,	the	two	protocols	are	sometimes	said	to	share	the	same	fate.	Link-state
changes	that	might	normally	only	affect	one	protocol	can	cause	an	SPF	recalculation	and
network	reconvergence	that	affects	both	the	IPv4	and	IPv6	network.

By	comparison,	a	router	configured	for	IS-IS	multitopology	mode	performs	a	separate
SPF	calculation	for	each	protocol,	isolating	reconvergence	and	eliminating	fate-sharing	—
at	least	as	a	consequence	of	routing	protocol	configuration	and	activity.	After	all,	routers
can	still	lose	power!	Because	of	this	isolation,	having	disjointed	sets	of	interfaces
configured	for	IPv4	and	IPv6	is	perfectly	fine.

So	if	you’re	using	IS-IS,	which	mode	should	you	choose?	Beyond	the	criterion	of
operational	consistency	that	we	already	mentioned,	the	above	described	behavior	has	at
least	two	consequences	to	consider:

Router	resource	preservation
Isolation	and	fault	tolerance

Since	single-topology	mode	maintains	and	performs	SPF	calculations	on	a	single	link	state
database,	both	router	memory	and	CPU	are	conserved.	Therefore,	if	the	availability	of
these	router	resources	in	your	dual-stack	network	is	scarce,	it	might	conceivably	be
necessary	to	run	IS-IS	in	this	mode.

By	contrast,	because	mutlitopology	uses	two	separate	link	state	databases,	each	with	its
own	SPF	calculations,	isolation	and	fault	tolerance	for	each	address	protocol	is	better
accomplished.



TIP

My	recommendation	is	to	run	multitopology	mode	wherever	possible.	Any	interruption	to	the	production	IPv4
network	during	the	initial	deployment	of	IPv6	can	result	in	delays	and	setbacks	to	its	adoption.	By	running	multi-
topology	mode,	the	inevitable	misconfiguration	of	IPv6	as	it’s	deployed	in	routing	infrastructure	will	ideally	only
affect	IPv6	traffic	(and	vice	versa	once	IPv4	is	officially	the	legacy	protocol	on	your	network).

OSPFv3	Address	Families
The	version	of	OSPF	we’re	likely	most	familiar	with	is	version	2.	This	has	traditionally
been	the	IGP	of	choice	among	larger	enterprises,	especially	where	the	greatest	degree	of
interoperability	between	different	vendors	is	desired.[130]

Version	3	of	OSPF	relies	on	the	same	basic	link-state	algorithms,	but	its	link-state
advertisements	(LSAs)	and	packet	formatting	have	been	updated	to	accommodate	the
larger	address	size.	It	also	leverages	the	IPv6	link-local	address	to	form	adjacencies.	And
since	it’s	per	link	instead	of	per	subnet	(and	since	IPv6	is	designed	to	permit	configuration
of	multiple	IPv6	addresses	and	subnets	per	interface),	a	single	link	can	support	more	than
one	instance	of	it.

For	our	discussion,	the	most	important	feature	of	OSPFv3	is	that	it	allows	for	multiple
address	families.	Let’s	look	at	an	example	of	this	with	an	OSPFv3	configuration
(Figure	10-2)	—	in	the	syntax	of	our	favorite	Vitamin	C	vendor.



Figure	10-2.	OSPFv3	router	config	example

Similar	to	IS-IS	for	IPv6	single-topology	mode,	all	routers	running	a	particular	OSPFv3
process	share	a	link-state	database	and	SPF	calculation.	Thus,	where	maximum	isolation
and	fault	tolerance	is	desired,	it’s	perhaps	preferable	to	run	OSPFv2	for	IPv4	and	OSPFv3
for	IPv6.[131]

MP-BGP
MP-BGP,	or	Multi-Protocol	BGP,	is	an	extension	to	BGP	that	allows	BGP	to	carry
Network	Layer	Reachability	Information	(NLRI,	i.e.,	IP	prefixes	being	advertised	by	a
BGP	peer)	for	multiple	routed	prototols	—	most	importantly	for	our	discussion,	IPv6	and
IPv4.[132]

MP-BGP	shares	configuration	syntax	with	OSPFv3	in	the	form	of	address	families.
Because	MP-BGP	extenstions	allow	for	multiple	network	protocol	types,	it	is	possible	to
send	and	receive	IPv4	and	IPv6	NLRI	to	and	from	a	given	peer	over	a	single	peering
session	of	either	protocol.

But	the	configuration	preferred	in	nearly	all	cases	is	a	peering	session	each	for	IPv4	and
IPv6	to	a	given	peer.	As	with	our	IGPs,	it’s	usually	better	to	have	isolation	and	fault
tolerance	than	to,	in	the	case	of	MP-BGP,	save	a	few	lines	of	configuration	(as	well	as



preserve	a	negligible	amount	of	memory	and	CPU).

Figure	10-3	shows	an	example	of	an	MP-BGP	router	config	with	the	preferred
configuration	(separate	peering	sessions	to	the	same	external	router	and	AS	for	IPv4	and
IPv6).

Figure	10-3.	MP-BGP	router	config	example



Routing	Table	Size	and	TCAM	Space
Routing	protocols	provide	a	picture	of	the	current	network	to	all	the	connected	and
participating	routers	(as	well	as	the	hosts	attached	to	them).	The	more	complete	and	up-to-
date	this	picture,	the	more	flexibility	an	engineer	may	have	to	shape	routing	policy	to
improve	network	performance,	lower	costs,	and	reduce	or	eliminate	outages	(and
successfully	sleep	through	the	night	without	getting	called	by	the	NOC!).

How	this	picture	of	the	network	is	created	and	applied	to	routing	and	packet	switching	has
changed	(and	improved)	greatly	over	the	years.	As	we’ll	see,	there	is	at	least	one	aspect	of
IPv6	adoption	that	is	problematic	as	a	result	of	the	current	practice.	But	first,	let’s	briefly
review	how	we	got	here.

RIB	versus	FIB
A	RIB,	or	routing	information	base,	is	essentially	the	routing	table	on	a	router.	A	router
could	have	a	number	of	ways	of	determining	what	networks	are	reachable	to	it,	including
the	ones	that	are	added	as	static	routes,	the	ones	that	are	directly	connected,	or	the	ones
that	are	learned	via	a	dynamic	interior	gateway	protocol	(IGP)	like	OSPF	or	EIGRP.	Since
every	valid	destination	network	is	paired	with	at	least	one	next	hop	or	outgoing	interface,
routers	must	have	some	mechanism	for	determining	the	availability	and	desirability	of	one
or	more	of	these	exit	points.	Most	routing	protocols	provide	this,	but	BGP,	as	well	as	some
static	routes,	can	have	a	next	hop	that	is	not	directly	reachable.	This	requires	that	the
router	perform	a	recursive	lookup	for	these	“remote”	next	hops.	Because	of	this,	it’s	not
always	possible	to	directly	switch	a	packet	without	at	least	one	recursive	lookup.

Very	early	routers	would	look	up	the	destination	for	each	packet	in	the	routing	table	and
send	it	on	its	way.

Obviously,	this	process	was	very	CPU-	and	memory-intensive	and	generally	inefficient	—
especially	for	more	modestly	sized	networks	with	a	small	number	of	unique	destinations.
Fast	switching	was	created	to	increase	the	performance	and	efficiency	of	routing	by
caching	the	results	of	a	recursive	lookup	so	that	ensuing	packets	to	those	same
destinations	wouldn’t	need	to	be	processed	by	the	router	CPU	but	could	be	fast-switched
instead.	This	was	accomplished	by	copying	the	RIB	to	a	forwarding	information	base
(FIB)	that	didn’t	rely	on	process	switching	but	could	be	pushed	down	to	the	port,	along
with	the	any	cached	next-hops,	for	fast	packet	switching.

FIBs	are	stored	at	the	port	level	in	something	called	ternary	content	addressable	memory,
or	TCAM	(alternately	spelled	$$$).	Because	TCAM	is	expensive,	it	is	usually	limited	in
size,	meaning	the	number	of	supported	FIB	entries	is	subsequently	limited	as	well.	This
means	that	the	picture	of	the	network	on	a	given	port	might	risk	being	incomplete	if	all	the
routes	needed	to	complete	that	picture	won’t	fit	because	of	limited	memory.

Complicating	this	is	the	continued	growth	of	the	IPv4	routing	table,	which	now	contains
over	512,000	IPv4	prefixes	(Figure	10-4).[133]	As	the	impact	of	IPv4	exhaustion	begins	to
be	felt,	more	organizations	will	be	looking	for	ways	to	sell	some	of	their	existing
allocations.	This	will	result	in	more	/24s	being	carved	out	for	deployment	along	with	the
precipitous	increase	in	routing	table	size	this	results	in.



Figure	10-4.	Global	routing	table,	number	of	prefixes	(Source:	The	CIDR	Report)

Enter	IPv6.	One	consequence	of	the	adoption	of	IPv6	is	a	four-times	increase	over	IPv4	in
the	amount	of	TCAM	required	for	an	IPv6	address	entry,	e.g.,	32	bits	for	an	IPv4	address,
128	bits	for	an	IPv6	address.	But	wait,	couldn’t	some	memory	be	conserved	by	reserving
only	64	bits	of	addressing	for	IPv6,	given	that	we	generally	don’t	keep	track	of	networks
for	routing	for	those	prefixes	smaller	than	a	/64	in	prefix	size?	Don’t	forget	that	we	still
have	to	accommodate	networks	for	point-to-point	links	and	loopback	interfaces.	Also,	it’s
possible	that	some	future	IPv6	network	architecture	or	configuration	might	rely	on	a
network	smaller	than	a	/64,	yet	not	one	of	the	well-known	exceptions	to	the	no	subnets
smaller	than	a	/64	rule.

Since	most	ports	are	doing	double	duty	supporting	dual-stack,	this	has	resulted	in	the
necessity	of	creating	profiles	for	the	TCAM	available	on	a	given	port.	Such	profiles
require	the	engineer	to	pre-partition	the	available	TCAM,	allocating	some	TCAM	for	IPv4
routes	and	some	for	IPv6.	If	the	architecture	requires	a	higher	degree	of	routing	visibility
and	policy	granularity	for	a	particular	interface	(e.g.,	one	of	two	or	more	egress	ports	to
the	Internet),	a	larger	amount	of	TCAM	may	be	needed.

As	mentioned,	the	DFZ	for	IPv4	contains	more	than	512,000	routes.	The	IPv6	Internet
routing	table	contains	more	than	18,000,	which,	when	mutliplied	by	the	at-least-two-times
factor	based	on	the	bits	required	by	the	network	portion	of	the	larger	address,	is	the
equivalent	of	no	fewer	than	36,000	IPv4	prefixes.	512K	is	a	common	TCAM	size	and
obviously	insufficient	to	hold	all	DFZ	IPv4	prefixes,	much	less	the	combined	prefixes	for

http://www.cidr-report.org/


both	the	IPv4	and	IPv6	global	routing	table.	For	example,	512,000	IPv4	routes	+
18,000(x2)	IPv6	routes	=	548K	routes.	As	TCAM	must	be	partitioned	according	to	the
rules	of	binary	arithmetic,	a	profile	for	512K	of	TCAM	might	provide	384K	for	IPv4	and
128K	for	IPv6.

While	the	current	IPv6	global	routing	table	would	consume	only	half	of	the	available
partition,	the	IPv4	partition	would	be	at	132%	utilization,	resulting	in	the	unreachability	of
some	significant	portion	of	the	IPv4	global	routing	table.

Increasing	the	TCAM	size	to,	say,	1M	provides	both	adequate	memory	for	current	IPv4
and	IPv6	global	routing	tables,	as	well	as	additional	memory	overhead	to	accommodate
the	inevitable	growth	of	the	IPv4	and	IPv6	routing	tables.	But	with	the	greater	expense	of
additional	TCAM,	you’ll	need	to	verify	that	the	enhanced	egress	traffic	control	(with	the
more	complex	routing	policy	associated	with	it)	is	justified	by	the	existing	network
architecture.	For	example,	an	enterprise	would	need	to	be	multihomed	to	at	least	two
providers	to	take	advantage	of	such	policies	(and	the	extra	visibility	receiving	the	full
routing	table	for	both	address	families	affords).



Mars	Needs	IP	Address	Blocks
A	big	part	of	keeping	your	IPv6	addresses	reachable	on	the	Internet	is	keeping	your
routing	table	free	of	Martians,	bogons,	and	fullbogons.	And	by	the	way,	keep	in	mind	that
all	bogons	are	now	Martians	but	not	fullbogons.

Wait,	what?!

Don’t	panic!	In	case	you	didn’t	know,	all	of	these	are	merely	somewhat	whimsical	idioms
for	bad	(i.e.,	bogus)	IP	addresses	and	prefixes.	So	what’s	the	difference	between	them	(and
what’s	the	etymology	of	these	somewhat	silly	terms)?

Martian

A	Martian	is	any	reserved	or	private	address	block.[134]	We’re	likely	most	familiar	with
these	from	IPv4	as	private	addresses	defined	in	RFC	1918.[135]

IPv6	Martians	can	be	found	in	RFC	5156,	Special-Use	IPv6	Addresses,	some	prefixes	of
which	we	reviewed	in	Chapter	2.	Table	10-1	shows	the	full	list.[136]

http://bit.ly/rfc-5156


Table	10-1.	IPv6	Martians

Address(es) Description RFC

::1/128 Node-Scoped	Unicast,	loopback	address 4291

::/128 Node-Scoped	Unicast,	unspecified	address 4291

::ffff:0:0/96 IPv4-mapped	addresses 4291

::/96 IPv4-compatible	addresses	(deprecated) 4291

fe80::/10 Link-Scoped	Unicast 4291

fc00::/7 Unique-Local	addresses	(ULA) 4193

2001:0002::/48 Reserved	for	IPv6	Benchmarking 5180

2001:db8::/32 Documentation	prefix 3849

100::/64 Remotely	Triggered	Black	Hole	addresses 6666

2001:10::/28 Overlay	Rouf	Cryptographic	Hash	IDentifiers	(ORCHID) 4843

fec0::/10 Site-Local	Unicast	(deprecated) 3879

ff00::/8 Multicast 4291.[a]

5f00::/8 First	6bone	allocation 1897

3ffe::/16 Second	6bone	allocation 2471

[a]	ff0e:/16	is	globally	scoped	and	may	be	permitted	on	the	Internet.

Bogons

A	bogon	includes	not	only	all	Martians	but	also	space	that	hasn’t	been	allocated	by
IANA	yet	to	a	RIR.	A	bogon	list	can	be	generated	by	reviewing	both	IANA’s	updated
list	of	reserved	and	allocated	prefixes,	as	well	as	the	combination	of	lists	of	prefixes	not
yet	assigned	by	IANA	to	the	RIRs.	However,	Team	Cymru	maintains	a	list	of	bogons
and	fullbogons	(explained	below)	that	can	be	retrieved	manually	or	automatically	using
an	Internet	routing	registry	(IRR).[137]

Fullbogons

A	fullbogon	is	a	concept	(and	accompanying	list)	invented	by	Team	Cymru	after	they
realized	that	the	existing	bogon	lists	were	not	granular	enough,	given	that	they	didn’t
also	contain	allocations	from	IANA	to	the	RIRs	that	had	not	yet	been	assigned	to	ISPs
or	end-users.

Attack	of	the	Bogons!



At	this	point,	you	may	be	asking	yourself	(if	you	don’t	already	know	from	bitter
experience),	what’s	so	bad	about	bogons	anyway?

Black-hat	hackers	and	assorted	reprobates	use	bogons	to	provide	spoofed	source	addresses
to	enable	denial-of-service	(DoS)	and	distributed	denial-of-service	(DDoS)	attacks.	Any
Internet	routability	of	bogon	prefixes	makes	such	malicious	efforts	easier.

The	miscreants	responsible	for	these	attacks	would	like	nothing	better	than	to	have	a	new
network	protocol	at	their	disposal	—	especially	one	for	which	operational	and	security
standards	are	still	maturing,	leaving	potential	paths	of	exploit	open	and	available.

It’s	incumbent	on	all	of	us	deploying	IPv6	for	the	first	time	to	make	sure	that	we	maintain
(or	even	improve)	our	security	policy	and	enforcement	in	IPv6.

What	this	means	in	the	context	of	our	current	topic	is	making	sure	that	you	properly	filter
bogons	(preferably	inbound	and	outbound)	at	your	Internet	edge.

BOGON	ETYMOLOGY

So	how	does	a	peculiar	little	word	like	bogon	come	into	existence	anyway?

Well,	according	to	programmer,	hacker,	and	sys/netadmin	lore,	bogons	are	the	quanta	of	the	property	of	being	bogus
(i.e.,	bogusness,	or	bogosity	if	you	prefer).	Further	clarification	for	the	ESL	set:	bogus	has	traditionally	meant	fake	or
counterfeit,	but	according	to	some	American	slang	has	come	to	mean	undesirable	or	useless	(i.e.,	“suckiness”)	in
slang.	Network	folks	have	apparently	found	a	nice	overlap	of	the	traditional	definition	and	the	slang	one	in	the	fact
that	a	bogon	prefix	is	used	to	counterfeit	packets	and	create	general,	shall	we	say,	suckage.

Filtering	Bogons
So	how	do	we	go	about	filtering	bogons	in	IPv6?	Before	we	look	at	the	specifics,	let’s
briefly	review	the	general	architecture	and	configuration	to	which	such	filtering	is	applied.

Unless	you’re	running	a	service	provider	network	with	lots	of	peers	and	IP	transit
connections	to	the	Internet,	chances	are	you	are	connected	to	one	or	two	(a	few	at	the
most)	ISPs.

Those	among	us	running	singly-homed	networks	probably	needn’t	worry	about	edge
filtering	because,	in	all	but	the	most	unusual	cases,	they	wouldn’t	be	running	BGP.
Instead,	they	would	typically	have	static	routes	for	both	Internet	ingress	and	egress.
Incoming	traffic	would	be	routed	to	their	network	by	a	route	on	the	ISP	side.	Outgoing
traffic	would	be	routed	by	a	default	route	to	the	Internet.

However,	where	a	network	is	dual-	or	multihomed	and	using	BGP	to	share	routes	with	two
or	more	upstream	ISPs,	proper	prefix	filtering	is	a	must.

Figure	10-5	shows	an	enterprise	network	customer	multihomed	to	two	providers.



Figure	10-5.	Egress	route	optimization,	multihomed	network

Say	the	enterprise	customer	would	like	to	be	able	to	control	outbound	traffic	flows	and
send	them	via	ISP	A	or	ISP	B,	depending	on	performance,	based	on	the	shortest	path,	to	a
particular	flow’s	destination,	e.g.,	in	the	figure’s	example,	responding	to	a	request	for
content	from	a	host	located	at	the	address	2001:db8:abcd:1::2/64.

For	traffic	optimization,	the	customer	would	need	to	be	configured,	and	have	sufficient
router	memory,	to	receive	the	entire	global	routing	table.	As	discussed	earlier	in	the
chapter,	there	are	currently	slightly	more	than	500K	routes	for	IPv4	and	more	than	18K
routes	for	IPv6.	The	full	table	allows	the	enterprise	content	server	to	select	the	best	egress
path,	e.g.,	shown	in	the	figure	as	the	path	to	the	host	through	ISP	A).

In	instances	where	basic	redundancy	is	desired	(or	router	memory	is	insufficient),	the
customer	could	instead	receive	a	default	route	from	each	ISP	and	preference	an	outbound
link,	according	to	criteria	like	best	performance	or	price	(Figure	10-6).[138]



Figure	10-6.	Basic	redundancy,	multihomed	IPv6	network

In	either	case,	the	customer	would	need	to	be	configured	to	advertise	its	IP	netblock(s)	to
both	ISPs,	providing	redundancy	and	more	optimal	performance	for	inbound	traffic.

Bogon	filtering	is	configured	for	both	sent	and	received	routes	on	the	customer’s	BGP
sessions	with	each	of	the	ISPs.	If	they	are	adhering	to	best	practices,	the	ISPs	will	likewise
be	filtering	the	routes	they	send	to,	and	receive	from,	the	customer.[139]

Note	that	the	provider’s	outbound	announcement	immediately	becomes	the	customer’s
received	routes,	just	as	the	customer’s	become	the	provider’s.	Thus,	in	an	ideal	world,	a
perfectly	maintained	bogon	filter	applied	outbound	on	the	provider’s	BGP	configuration
and	session	would	preclude	the	need	for	a	bogon	filter	on	the	customer’s	inbound	BGP
configuration	(and	vice	versa).

So	if	you	trust	your	provider	as	you	would	your	brain	surgeon,	feel	free	to	leave	that
ingress	filter	off.	After	all,	it’s	one	less	configuration	you’d	have	to	deal	with.	While
you’re	at	it,	see	if	you	can	convince	your	provider	that	you’ll	keep	your	filters	up-to-date
with	the	latest	bogons	and	meticulously	applied	so	the	provider	can	do	the	same.	What
could	possibly	go	wrong?

Mild	sarcasm	aside,	bad	routes	filtered	at	your	provider’s	egress	would	never	clutter	up
your	link	to	the	ISP	before	being	dropped	anyway	when	received	by	your	router	and
filtered	by	what	should	be,	in	an	ideal	world,	the	exact	same	filter.

But	as	we	know,	in	the	less-than-ideal	world	of	network	operation,	we	can’t	guarantee	that
our	ISP	will	never	accidentally	advertise	bogons	to	us,	any	more	than	we	can	guarantee
our	ISP	that	some	fat	fingers	or	a	security	breach	on	our	end	won’t	result	in	us	announcing
garbage	to	them.

Thus,	for	the	best	security,	bogon	filters	should	be	applied	to	our	sent	and	received	BGP
routing	advertisements.	And	the	more	complete	and	up-to-date	the	bogon	list,	the	better



the	protection.

Table	10-2	summarizes	filter	sources	in	order	of	completeness.

Table	10-2.	Filter	sources,	from	least	to	most	complete

Filter Source

Fullbogons Bogons	+	IP	netblocks	allocated	to	the	RIRs	but	as	yet	unassigned

Martians Reserved	and	special-use	IP	addresses

Bogons Martians	+	IP	netblocks	not	yet	allocated	to	the	RIRs	by	IANA

As	you’ve	probably	inferred,	the	list	of	netblocks	allocated	by	IANA	to	the	RIRs,	as	well
as	the	netblocks	allocated	to	the	RIRs	but	not	yet	assigned	to	ISPs	or	end-users,	changes
over	time.

For	example,	since	IANA	handed	out	the	last	of	the	unallocated	IPv4	netblocks	back	in
2011,	bogons	now	include	only	martians.	But	the	fullbogons	list	will	continue	to	change.
As	a	result,	our	filters	need	to	be	updated	often	enough	to	track	and	accommodate	these
changes.

Perhaps	the	best	way	to	keep	up	with	changes	is	to	automate	the	whole	process	by	peering
with	a	bogon	list	maintainer	(e.g.,	Team	Cymru)	or	an	IRR	(e.g.,	RADb).	Such	a
configuration	is	beyond	the	scope	of	this	book	but	can	be	found	on	the	Team	Cymru
website.

Finally,	the	appropriate	filtering	logic	for	catching	IPv6	bogons	is	a	bit	different	than	it	is
in	IPv4.	The	reason	is	that	the	list	of	fullbogons	for	IPv6	is	in	the	neighborhood	of	50K
prefixes,[140]	and	is	around	20	times	larger	than	the	list	for	IPv4.

More	than	50K	entries	is	a	whole	lot	of	config	real	estate	and,	unless	maintained
automatically,	an	opportunity	for	incorrect	new	entries	or	changes	with	typos.	As	a	result,
it	makes	more	sense	to	explicitly	allow	only	the	known	valid	IPv6	prefixes	while
implicitly	denying	everything	else	(Figure	10-7).

https://team-cymru.org/


Figure	10-7.	Fullbogon	filtering	in	IPv6

This	is	the	reverse	of	the	filtering	logic	we	apply	in	IPv4	with	its	more	manageable
fullbogon	list:	explicitly	deny	the	bogons	while	implicitly	allowing	everything	else
(Figure	10-8).

Figure	10-8.	Fullbogon	filtering	in	IPv4



Summary
In	this	chapter,	we	covered	some	of	the	critical	operational	aspects	of	keeping	the	prefixes
of	your	IPv6	address	plan	reachable.

As	we’ve	learned,	the	routing	protocols	we’re	most	familiar	with	from	our	IPv4
operational	environments	all	have	IPv6	versions.	But	we’ll	need	to	take	care	to	select	the
right	one	based	on	balancing	the	need	for	operational	continuity	with	the	need	for	IPv4
production	network	stability.	The	former	is	arguably	provided	best	by	using	the	same
routing	protocol	for	IPv6	as	we	use	for	IPv4	(along	with	perhaps	single-topology	mode
where	available	and	required	by	any	limits	on	router	resources).	Meanwhile,	using	a
different	routing	protocol	(or	dual-topology	mode)	may	provide	better	isolation	and	fault
tolerance	of	both	IPv4	and	IPv6	networks	(but	especially	the	existing	IPv4	production
network).

Proper	filtering	of	routes	received	from,	and	announced	to,	your	ISP	will	also	help	keep
your	IPv6	network	prefixes	reachable.	We	covered	the	differences	between	bogon	lists	in
the	respective	address	families	and	the	contrasting	filtering	logic	required	to	catch	them.
We	also	need	to	ensure	that	we’re	not	announcing	garbage	to	our	peers,	even	if	it’s	just	our
upstream	ISP.

[127]	RFC	5340,	OSPF	for	IPv6.

[128]	RFC	5308,	Routing	IPv6	with	IS-IS.

[129]	RFC	4760,	Multiprotocol	Extensions	for	BGP-4.

[130]	As	a	result	of	such	wide	deployment,	there	is	a	tremendous	amount	of	collected	operational	wisdom	on	how	OSPF
behaves	in	production	that	can	be	leveraged	by	engineers	and	operational	staff.

[131]	RFC	5838,	Support	of	Address	Families	in	OSPFv3.

[132]	The	extensions	in	MP-BGP	also	allow	for	carrying	NLRI	for	MPLS	VPN	and	multicast.

[133]	As	of	Tuesday,	August	12th,	2014:	“The	Internet	Just	Broke	Under	Its	Own	Weight…”.

[134]	Nothing	should	ever	originate	from	the	Red	Planet!

[135]	We	may	be	less	familiar	with	the	other	two	RFCs	that	define	Martians	in	IPv4	—	RFC	5735	(i.e.,	Special	Use	IPv4
Addresses)	includes	all	the	other	reserved	addresses	along	with	those	already	defined	as	private	in	RFC	1918.
Meanwhile,	RFC	6598	(i.e.,	IANA-Reserved	IPv4	Prefix	for	Shared	Address	Space)	more	recently	defined	a	/10	of	IPv4
addresses	to	share	among	those	providers	deploying	CGN.	Feel	free	to	look	up	these	additional	ranges,	as	we	won’t
clutter	up	our	beautiful	IPv6	address	planning	book	with	more	IPv4	addresses	than	necessary!

[136]	Not	all	address	ranges	in	RFC	5156	are	Martians.	For	example,	the	Teredo	prefix	(2001::/32)	and	6to4	prefix
(2002::/16)	may	be	advertised	on	the	Internet	where	these	services	are	offered.

[137]	The	Bogon	Reference	—	Team	Cymru.	Team	Cymru	Research	NFP	describes	itself	as	“a	specialized	Internet
security	research	firm	and	501(c)3	non-profit	dedicated	to	making	the	Internet	more	secure…Team	Cymru	helps
organizations	identify	and	eradicate	problems	in	their	networks,	providing	insight	that	improves	lives.”

[138]	The	customer	might	also	opt	to	receive	the	network	prefixes	of	the	provider’s	other	customers	along	with	the
default	route.	While	not	requiring	as	much	memory	as	the	full	table,	this	BGP	policy	at	least	ensures	that	egress	traffic
will	select	the	provider	with	the	shortest	path	to	learned,	more	specific	destination	networks.

[139]	Belt	and	suspenders,	baby!

http://bit.ly/rfc-5340
http://bit.ly/rfc-5308
http://bit.ly/rfc-4760
http://bit.ly/rfc-5838
http://bit.ly/internet-crash
http://bit.ly/rfc-5735
http://bit.ly/rfc-6598
http://bit.ly/cymru-bogons


[140]	This	is	more	than	twice	as	many	entries	as	the	actual	IPv6	global	routing	table!





Glossary
GENTEEL,	adj.	Refined,	after	the	fashion	of	a	gent.	Observe	with	care,	my	son,	the	distinction	I	reveal:	A
gentleman	is	gentle	and	a	gent	genteel.	Heed	not	the	definitions	your	“Unabridged”	presents,	For	dictionary	makers
are	generally	gents.

—	Ambrose	Bierce	The	Devil’s	Dictionary	(1911)

Allocation

(As	compared	with	assignment)	Formally,	the	apportionment	of	an	IP	address	prefix	to
a	RIR	by	IANA	or	to	a	LIR	by	a	RIR.	Informally,	any	allotment	of	an	IP	prefix	which
will	be	further	subnetted	for	smaller	allotments	(referred	to	as	assignments).

Assignment

Formally,	the	apportionment	of	an	IP	address	prefix	by	an	ISP	to	an	end-user,	but
sometimes	used	interchangeably	with	allocation	and/or	to	mean	any	allotted	prefix.

Bogon

An	invalid	(i.e.,	bogus)	routing	prefix	that	should	never	appear	in	the	global	routing
table.	Perhaps	the	most	well-known	example	of	a	bogon	is	RFC	1918,	or	private,	IPv4
address	space.	Addresses	from	bogon	prefixes	can	be	used	by	hackers	and	miscreants	to
spoof	source	addresses	in	malicious	packets	and	therefore	should	be	filtered,	ideally
inbound	and	outbound,	at	an	organization’s	network	edge.

Bisection

An	IP	allocation	method	(preferred	by	service	providers	and	RIRs)	that	leaves	the
maximum	amount	of	space	between	each	prefix	assignment	(while	still	providing
enough	prefixes	of	the	desired	subnet	size	for	immediate	use).	Subsequent	allocations
may	evenly	divide	the	space	remaining	between	original	assignments.	Bisection	is
better	suited	to	allowing	aggregation	of	current	and	future	assignments.

Bogons

IP	allocations	that	have	not	been	allocated	to	a	RIR	by	IANA	and	should	never	appear
in	the	Internet	routing	table.	Many	bogons	are	private	and	reserved	addresses	as
specified	in	RFCs	1918,	5735,	and	6598.	See	also,	fullbogons.

BYOD

Bring	Your	Own	Device,	the	trend	of	employees	bringing	personal	mobile	computing
devices	(e.g.,	smartphones,	tablets,	etc.)	into	the	workplace.

CAFT

Copious	Amounts	of	Free	Time,	all	the	extra	time	you	have	to,	upon	heedless	request,
immediately	drop	whatever	you	were	previously	asked	to	accomplish	and	take	up,	with
top	priority,	a	brand	new	task.	For	example,	“Yes,	of	course	I	can	watch	this	latest	video
from	HR	on	maximizing	productivity:	I’ll	do	it	with	my	Copious	Amounts	of	Free
Time.”

CIDR



Classless	Inter-domain	Routing,	allows	for	the	division	of	an	IP	address’s	network	and
host	portion	along	any	bit	boundary.	(This	is	in	contrast	to	classful	networking	that
defined	strict	8-bit	boundaries.)	The	greater	granularity	of	address	assignment,
subnetting,	and	routing	offered	by	CIDR	permitted	both	conservation	and	better
aggregation	of	IPv4	addresses.	CIDR	(with	CIDR	notation)	is	used	in	both	IPv4	and
IPv6.	In	IPv4,	CIDR	is	accomplished	through	Variable	Length	Subnet	Masking
(VLSM).

CIDR	Notation

CIDR	notation	is	a	method	of	IP	address	presentation	where	the	number	of	bits	reserved
for	the	network	(and	implying	the	remaining	host	bits)	is	appended	to	the	end	of	the
network	prefix	after	a	forward	slash.	For	example,	CIDR	notation	for	an	IPv4	address
prefix	with	24	bits	reserved	for	the	network	(leaving	8	bits	for	hosts)	would	look	like
this:	192.168.10.0/24.	In	IPv6,	a	64	bit	interface	prefix	would	be	represented	like	this:
2001:db8:1000:abba::/64.

Classful	Networks

(Also	referred	to	as	class	A,	B,	and	C	networks).	IPv4	prefixes	characterized	by	either
8,	16,	or	24	bits	in	the	network	portion	of	the	address.	Classful	networks	were	used	in
the	early	days	of	the	Internet	to	create	hierarchical	routing	but	were	eventually
deprecated	in	favor	of	network	prefixes	that	could	be	any	length	by	using	VLSM	and
CIDR.	This	provided	additional	address	space	while	attempting	to	keep	in	check	the
number	of	IPv4	prefixes	in	the	global	routing	table.

Contiguous	Subnets

Contiguous	subnets	are	subnets	of	equal	size	that	are	adjacent	to	each	other.	Contiguous
subnets	that	are	divisible	by	factors	of	2^n	can	be	aggregated	into	larger	blocks,	or
summarized,	in	order	to	reduce	the	number	of	entries	in	the	routing	table.	By
comparison,	discontiguous	subnets	cannot	be	aggregated	into	larger	blocks	without
rendering	any	intervening	blocks	unreachable.

Convergence

A	state	of	agreement	by	all	the	routers	participating	in	a	dynamic	routing	protocol	about
what	the	network	topology	looks	like.	A	network	is	converged	(i.e.,	the	routing	is
stable)	when	all	routing	nodes	have	received	all	updates	and	performed	all	path
calcluations	for	every	known	destination	and	no	immediate	changes	to	the	topology
(outages,	reconfigurations)	have	occurred.	In	networks	running	both	IPv4	and	IPv6,
convergence	for	each	address	family	is	acheived	independently	(unless	running	in
single-topology	mode	for	IS-IS	or	OSPFv3	with	IPv4	as	an	address	family).

DAD

Or	duplicate	address	detection;	a	component	of	Neighbor	Discovery	that	verifies
whether	an	autoconfigured	address	is	already	in	use	on	the	link.	Autoconfigured	IPv6
addresses	are	in	a	tentative	state	until	the	node	sends	a	Neighbor	Solicitation	with	its
proposed	address.	If	it	doesn’t	receive	a	response,	it	assumes	that	no	node	is	using	the
proposed	address	and	the	address	is	activated.	Otherwise,	no	address	is	configured.



DDI

DNS,	DHCP,	and	IP	address	management,	a	class	of	technology	whose	purpose	it	is	to
facilitate	network	control	and	automation	by	providing	a	collection	of	tools	and
practices	that	optimize	network	addressing	and	naming,	as	well	as	leverage	the	data
associated	with	it.

DFZ

Default-free	Zone	(see	Global	Routing	Table).

Deprecated	Address

An	autoconfigured	IPv6	address	whose	peferred	lifetime	(but	not	valid	lifetime)	has
elapsed.	Applications	should	not	use	any	deprecated	address	for	new	connections,	but
may	use	such	an	address	for	existing	connections.

Dual-Stack	Network

Or,	dual-stack	IPv6.	A	network	architecture	where	IPv4	and	IPv6	are	configured	and
run	in	parallel	on	the	same	network	infrastructure.	Contrast	with	IPv6-only	networks
(e.g.,	where	no	IPv4	is	configured)	or	IPv4	to	IPv6	transition/translation	where	IPv4-
only	and	IPv6-only	networks	communicate	through	transition	technologies	(see	below).

EGP

Exterior	Gateway	Protocol	is	a	routing	protocol	optimized	for	routing	between
autonomous	systems	(AS),	i.e.,	networks	that	are	under	one	administrative	authority.
For	example,	BGP	is	the	exterior	gateway	protocol	of	the	Internet.

Fullbogon

The	set	of	bogons	(see	above)	plus	any	IP	space	that	has	been	allocated	to	a	RIR	by
IANA	but	is	not	yet	assigned	to	an	ISP	or	end-user.	Like	bogons,	fullbogons	should
never	appear	in	the	global	routing	table.

Global	Routing	Table

(aka	the	DFZ)	is	the	routing	table	of	all	prefixes	currently	being	announced	on	the
Internet	via	BGP.	It’s	called	the	default-free	zone	because,	ideally,	it	never	contains	a
default	route	(i.e.,	a	route	to	0.0.0.0/0	or	0::0/0).	Since	IPv4	and	IPv6	constitute	separate
address	families,	there	is	one	DFZ	for	each.	As	of	the	time	of	this	writing,	the	IPv4	DFZ
numbered	just	over	500,000	prefixes	while	the	IPv6	DFZ	was	in	the	neighborhood	of
18,000	(roughly	3.6%	the	size	of	the	IPv4	table).

IGP

Interior	Gateway	Protocol,	a	routing	protocol	optimized	for	routing	with	an	autonomous
system	(a	network	under	one	administrative	authority).	Examples	of	IGPs	for	IPv6
include	OSPFv3,	IPv6	IS-IS,	and	(Cisco-proprietary)	EIGRP	for	IPv6.

IPAM



IP	Address	Management	is	the	collection	of	practices	and	tools	utilized	by	an
organization	to	effectively	manage	both	IPv4	and	IPv6	address	resources.	IPAM
software	tracks	IP	addresses	and,	in	some	cases,	can	correlate	them	to	DHCP(v6)	and
DNS;	technology	collectively	referred	to	as	DDI	(i.e.,	DNS,	DHCP,	and	IP	Address
Management).	Though	formal	IPAM	tools	have	in	the	past	been	considered	optional	by
some	organizations	with	lightweight	addressing	requirements,	it	is	largely	considered	a
necessity	in	effectively	tracking	IPv6,	given	the	larger	address	space	and	more	complex
representation.

IPv6-Only

A	nirvana-like	network	configuration	and	topology	in	which	only	IPv6	addresses	are
used	and	IPv4	addresses	are	but	a	strange	and	fading	memory,	like	53-byte	ATM	cells
or	thick	ethernet	vampire	taps.

ISP

Internet	Service	Provider,	an	LIR.

Invalid	Address

An	autoconfigured	IPv6	address	whose	valid	lifetime	has	elapsed.	Invalid	addresses
may	not	be	used	for	any	connections.

LIR

Local	Internet	Registry,	an	ISP.

ND

Neighbor	Discovery	is	a	required	protocol	used	in	IPv6	on	a	local	link	to	perform
various	tasks,	including	discovering	neighboring	nodes,	facilitating	host	address
autoconfiguration,	determining	link	layer	addresses	of	other	nodes	(layer	2	to	layer	3
mapping,	replacing	ARP	in	IPv4),	detecting	duplicate	addresses,	and	discovering
routers	and	DNS	servers.	ND	relies	on	five	ICMPv6	packet	types	to	accomplish	these
tasks:	Router	Solicitation,	Router	Advertisement,	Neighbor	Solicitation,	Neighbor
Advertisement,	Redirect.

Native	IPv6

An	IPv6	network	that	doesn’t	need	to	rely	on	any	IPv4	in	order	to	function.

PA	Allocation

Provider	assigned	allocation	(sometimes	referred	to	as	a	provider	aggregateable
allocation)	is	an	allocation	of	IP	addresses	(either	IPv4	or	IPv6)	to	an	end-user
organization	from	an	ISP	or	LIR.	PA	allocations	are	not	portable	(i.e.,	cannot	be
announced	via	another	ISP	or	provider)	and	must	be	numbered	out	of	and	returned	if
service	with	the	allocating	ISP	is	terminated.

PI	Allocation



Provider	independent	allocation.	IP	addresses	(either	IPv4	or	IPv6)	are	allocated	and
registered	to	an	end-user	organization	from	a	RIR.	PI	allocations	are	portable,	meaning
any	connecting	ISP	should	receive	and	reannounce	them.	Since	PI	allocations	are
registered	directly	to	the	end-user	organization,	renumbering	when	switching	ISPs	is
avoided.

Preferred	Address

One	of	two	address	states	(the	other	being	deprecated)	of	a	valid	auto-assigned	IPv6
address.	Preferred	addresses	are	addresses	whose	configured	preferred	lifetime	has	not
elapsed.	They	are	unrestricted	and	can	be	used	by	applications	for	any	communication,
new	or	existing	(contrast	with	deprecated	address).

Privacy	Extensions

(aka	IPv6	Privacy	or	Temporary	Addresses)	is	a	method	whereby	the	interface	identifier
(the	right-most	64	bits)	of	an	autoconfigured	IPv6	address	is	randomized	to	obscure	the
identity	of	the	node	originating	any	traffic.

RA

Router	Advertisement	is	an	ICMPv6	packet	of	type	133	that	contains	fields	that	instruct
the	host	what	form	of	auto-addressing	(if	any)	it	is	to	support	(stateful	or	stateless
DHCPv6	or	SLAAC).	It	also	contains	IPv6	prefix	information	that	a	host	will	use	to
self-configure	if	SLAAC	is	the	configured	mechanism.	Finally,	it	instructs	the	host
about	the	available	gateway(s)	to	use.

RIR

Regional	Internet	Registry	(or	Registries)	are	the	geographically	regional	organizations
responsible	for	managing	and	allocating	Internet	number	resources	like	IPv4	and	IPv6
addresses	and	Autonomous	System	Numbers	(ASNs).	These	numbers	are	allocated	to
them	by	the	Internet	Assigned	Numbers	Authority	(IANA).	There	are	five	RIRs:	ARIN,
RIPE,	APNIC,	LACNIC,	and	AFRINIC	(see	separate	entries).

SDN

Software	Defined	Networking	is	a	recent	networking	architecture	designed	around	the
decoupling	of	an	openly	programmable	network	control	plane	from	a	forwarding	(data)
plane	that	is	abstractly	programmed	using	protocols	like	OpenFlow.	Such	an	abstraction
is	usually	isolated	inside	a	router	or	switch	for	the	primary	purpose	of	supporting	legacy
protocols	that	often	have	limited	flexibility	in	dynamically	improving	network
performance	or	enhancing	functionality.

SLAAC

Stateless	Address	Autoconfiguration	is	a	method	that	nodes	(i.e.,	hosts)	use	to
autoconfigure	addresses	in	IPv6.	SLAAC	relies	on	ND	Router	Advertisements	via
ICMPv6	to	receive	prefix	information	and	complete	the	address	configuration	process.
SLAAC	is	used	less	frequently	than	DHCPv6	in	enterprise	environments	where	greater
control	of	hosts	is	desired.

Single-Stack	IPv6



Also	referred	to	as	IPv6-only;	a	network	that	exclusively	runs	IPv6.	In	contrast	to	a
dual-stack	network	that	runs	both	IPv4	and	IPv6.

Stateful	DHCPv6

Autoconfiguration	of	a	host	IPv6	address	by	a	DHCPv6	server.	Hosts	must	still	obtain
their	default	gateway	information	via	router	advertisement	(RA).

Stateless	DHCPv6

Autoconfiguration	of	a	host	IPv6	address	by	SLAAC	with	other	configuration	settings
(DNS	servers,	domain	search	list,	etc.)	provided	by	a	DHCPv6	server.

TCAM

Ternary	Content	Addressable	Memory	is	specialized	memory	used	by	routers	to	store
routing	tables	for	fast	lookups.	TCAM	can	be	configurable	to	allow	for	both	IPv4	and
IPv6	routes	to	be	stored	and	the	additional	expense	of	TCAM	may	limit	the	number	of
routes	available	to	either	address	family	based	on	a	preconfigured	profile.

TCAM	Profile

A	router	or	switch	configuration	that	logically	partitions	port	or	interface	TCAM	to
provide	FIB	space	for	both	IPv4	and	IPv6	prefixes.

Transition	Technology

Alternately	referred	to	as	a	translation	technology,	any	solution	with	one	or	more
interfaces	that	translates	packets	between	IPv4	and	IPv6,	allowing	an	IPv4	endpoint	to
communicate	with	an	IPv6	endpoint.	Transition	technologies	were	ostensibly	designed
to	ease	the	transition	between	IPv4	and	IPv6.	Transition	technologies	include
DNS64/NAT64,	464XLAT,	DS-Lite,	and	MAP-E	and	MAP-T.

VLSM

Variable	Length	Subnet	Masking	is	a	method	of	creating	subnets	of	an	arbitrary	length
from	a	prefix	by	using	a	variable	length	bit	mask	(as	compared	to	a	fixed	mask	of	8,	16
or	24	bits,	used	for	defining	classful	addressing	prefixes	of	a	subsequently	fixed	size,
e.g.,	class	A,	B,	and	C	networks).	CIDR	notation	indicates	the	the	number	of	bits	in	the
chosen	mask	and	provides	a	more	human-readable	format	for	determining	the	size	of	a
given	subnet.

Valid	Address

An	autoconfigured	IPv6	address	whose	valid	lifetime	has	not	elapsed.	Valid	addresses
can	be	either	preferred	or	deprecated	(see	above).





Appendix	A.	Planning	Worksheets
Use	the	following	worksheets	to	help	apply	some	of	the	principles	and	methods	from	the
book	to	your	own	addressing	plan.

Note:	Soft	copies	of	these	worksheets	are	available	at	www.ipv6.works.

Figure	A-1.	IPv6	Address	planning	worksheet

http://www.ipv6.works


Figure	A-2.	Intersite	(/32	to	/48)	hierarchy	planner

Figure	A-3.	Intersite	subnet	chart



Figure	A-4.	Intrasite	(/48	to	/64)	Hierarchy	Planner

Figure	A-5.	Intrasite	Subnet	Chart





Appendix	B.	IPv6	Prefix	Maps
These	prefix	maps	may	help	you	more	quickly	visualize	two	of	the	different	subnetting
methods	presented	in	Chapter	4.	Figure	B-1	illustrates	the	basic	format	of	the	prefix	maps
that	follow:	Incrementing	the	leftmost	bits	(Figure	B-2)	or	the	rightmost	bits	(Figure	B-3)
of	a	prefix.

Figure	B-1.	IPv6	Address	prefix	bitmap



Figure	B-2.	/40	to	/48,	Incrementing	the	leftmost	bits	(sparse	allocation)



Figure	B-3.	/40	to	/48,	Incrementing	the	rightmost	bits	(N+1	allocation)
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The	animal	on	the	cover	of	IPv6	Address	Planning	is	the	Pander’s	ground	jay	(Podoces
panderi),	also	known	as	a	chough	thrush,	grey	ground	jay,	or	Turkestan	ground	jay.	These
birds	are	members	of	the	Corvidae	family,	which	includes	crows	and	jays.	They	can	be
found	in	central	Asia,	particularly	the	countries	of	Kazakhstan,	Turkmenistan,	and
Uzbekistan.

They	are	small	birds	with	slim,	slightly	curved	beaks	and	sand-colored	plumage.	Their
tails	are	black,	and	they	also	have	a	large	black	spot	on	their	breast.	Pander’s	ground	jays
live	in	desert	habitats	with	plenty	of	bushes	for	cover,	but	will	also	forage	near	human
settlements.

As	their	common	name	suggests,	ground	jays	spend	most	of	their	time	on	the	ground,	and
are	indeed	more	adept	at	running	than	flying.	Their	beaks	are	well	adapted	for	digging	and
probing	the	earth	as	they	forage	for	a	diet	of	insects,	seeds,	and	plant	matter.

Birds	of	the	Corvidae	family	are	very	intelligent,	with	a	brain-to-body	mass	ratio	equal	to
that	of	great	apes	(and	only	slightly	lower	than	humans).

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.
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